4 research outputs found

    The potential interaction between time perception and gaming: a narrative review

    Get PDF
    Compromised time control is a variable of interest among disordered gamers because time spent on videogames can directly affect individuals’ lives. Although time perception appears to be closely associated with this phenomenon, previous studies have not systematically found a relationship between time perception and gaming. Therefore, the purpose of this narrative review is to explore how gaming disorder may be associated with time perception. It has been found that gamers exhibit a stronger attentional focus as well as an improved working memory compared with non-gamers. However, gamers (and especially disordered gamers) exhibit a stronger reaction to gaming cues which—coupled with an altered emotion regulation observed among disordered gamers—could directly affect their time perception. Finally, “'flow states”' direct most of the attentional resources to the ongoing activity, leading to a lack of resources allocated to the time perception. Therefore, entering a flow state will result in an altered time perception, most likely an underestimation of duration. The paper concludes that the time loss effect observed among disordered gamers can be explained via enhanced emotional reactivity (facilitated by impaired emotion regulation)

    Motor and perceptual timing in Parkinson's Disease

    No full text
    Neuroimaging has been a powerful tool for understanding the neural architecture of interval timing. However, identifying the critical brain regions engaged in timing was initially driven by investigation of human patients and animals. This chapter draws on the important contribution that the study of patients with Parkinson’s disease (PD) has made in identifying the basal ganglia as a key component of motor and perceptual timing. The chapter initially describes the experimental tasks that have been critical in PD (and non-PD) timing research before systematically discussing the results from behavioural studies. This is followed by a critique of neuroimaging studies that have given insight into the pattern of neural activity during motor and perceptual timing in PD. Finally, discussion of the effects of medical and surgical treatment on timing in PD enables further evaluation of the role of dopamine in interval timing
    corecore