36 research outputs found

    A prospective, cross-sectional study of anaemia and peripheral iron status in antiretroviral naïve, HIV-1 infected children in Cape Town, South Africa

    Get PDF
    BACKGROUND: Anaemia is a common manifestation of paediatric HIV infection. Although there are many causes, anaemia of chronic diseases is the most frequent type. In poor countries iron deficiency is widespread. It is probable that many HIV-infected children in these countries are also iron deficient. This study describes the relationship between paediatric HIV infection and anaemia, and documents the peripheral iron status of antiretroviral naive, HIV-infected children. METHODS: Sixty children were evaluated prospectively. Investigations included CD4+ count, haemoglobin concentration (Hb), red blood cell (RBC) morphology, and iron studies. RESULTS: Anaemia was present in 73% of children. Compared to mild HIV infection, median Hb was lower in children with moderate clinical infection (104 g/L v 112 g/L, p = 0.04) and severe clinical infection (96 g/L v 112 g/L, p = 0.006), and more children with severe infection were anaemic (92% v 58%, 0.04). There was a significant relationship between immunological status and Hb. 68% had abnormal RBC morphology. Significantly more children with moderate and severe disease, and severe immunosuppression had abnormal RBC morphology. 52% were iron-depleted, 20% had iron-deficient erythropoiesis and 18% iron deficiency anaemia (IDA). 16% (7/44) of anaemic children had microcytosis and hypochromia. Median soluble transferrin receptor concentration was significantly higher in those with microcytic hypochromic anaemia (42.0 nmol/L v 30.0 nmol/L, p = 0.008). CONCLUSIONS: Both the proportion of anaemic children and the median Hb were associated with disease status. Iron depletion and IDA are major problems in HIV-infected children in South Africa

    Different patterns of Ca2+ signals are induced by low compared to high concentrations of P2Y agonists in microglia

    Get PDF
    Brain-resident macrophages (microglia) are key cellular elements in the preservation of tissue integrity. On the other hand, they can also contribute to the development of pathological events by causing an extensive and inappropriate inflammatory response. A growing number of reports indicate the involvement of nucleotides in the control of microglial functions. With this study on P2Y receptors in rat microglia, we want to contribute to the definition of their expression profile and to the characterisation of their signalling mechanisms leading to Ca2+ movements. Endogenous nucleotides, when applied at a concentration of 100 μM, elicited robust Ca2+ transients, thanks to a panel of metabotropic receptors comprising mainly P2Y2, P2Y6 and P2Y12 subtypes. The involvement of P2Y12 receptors in Ca2+ responses induced by adenine nucleotides was confirmed by the pharmacological and pertussis toxin sensitivity of the response induced by adenosine diphosphate (ADP). Beside the G protein involved, Gi and Gq respectively, adenine and uracil nucleotides differed also for induction by the latter of a capacitative Ca2+ plateau. Moreover, when applied at low (sub-micromolar) concentrations with a long-lasting challenge, uracil nucleotides elicited oscillatory Ca2+ changes with low frequency of occurrence (≤ 1 min−), sometimes superimposed to an extracellular Ca2+-dependent sustained Ca2+ rise. We conclude that different patterns of Ca2+ transients are induced by low (i.e., oscillatory Ca2+ activity) compared to high (i.e., fast release followed by sustained raise) concentrations of nucleotides, which can suggest different roles played by receptor stimulation depending not only on the type but also on the concentration of nucleotides

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Freshwater to seawater acclimation of juvenile bull sharks ( Carcharhinus leucas): plasma osmolytes and Na +/K +-ATPase activity in gill, rectal gland, kidney and intestine

    No full text
    This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint
    corecore