317 research outputs found

    Spray-Drying Cellulose Nanofibrils: Effect of Drying Process Parameters on Particle Morphology and Size Distribution

    Get PDF
    Spray-drying was chosen as an appropriately scalable manufacturing method to dry cellulose nanofibril (CNF) suspensions. Spray-drying of two different types of CNF suspensions—nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC)—was carried out using a laboratory-scale spray dryer. Effects of three spray-drying process parameters on particle morphology and particle size distribution were evaluated: 1) gas flow rate; 2) liquid feed rate; and 3) suspension solids concentration. Particle morphology was characterized by scanning electron microscopy (SEM) and a morphology analyzer. SEM showed that spray-drying of NFC formed fibrous particles and fibrous agglomerates, whereas spray-drying CNCs produced spherical and mushroom cap (or donut)-shaped particles. Particle morphology formation mechanisms are proposed for spray-drying nanocellulose suspensions. The effect of the three spray-drying process parameters on particle size distribution depended on the drying nature of the materials. The three parameters interacted to significantly affect particle size of CNC suspensions, whereas they did not interact to affect particle size of NFC suspensions. For the CNC suspension, a higher gas flow rate produced smaller particle sizes. The gas flow rate did not affect particle size for NFC suspensions. The effect of liquid feed rate and solids concentration on CNF particle size was negligible in this study. The smallest mean circle equivalent diameters produced in this study were 3.95 μm for NFC and 3.64 μm for CNC

    EVALUATION OF THE PROPHYLACTIC ROLE OF INDIAN SHRIMP IN ALUMINUM CHLORIDE-INDUCED ALZHEIMER’S DISEASE ON EXPERIMENTAL RATS

    Get PDF
    Objective: This work was aimed to investigate the prophylactic and therapeutic role of Indian shrimp in aluminum chloride-induced Alzheimer’s disease (AD) in rats. Methods: The male Wistar rats were selected and divided into six groups. Group I received distilled water, Group II received AlCl3 ( 100 mg/kg, p.o.), Group III received rivastigmine (1 mg/kg, p.o.), Group IV received AlCl3 + shrimp powder (200 mg/kg, p.o), and Group V received AlCl3 + shrimp powder (400 mg/kg, p.o) for 60 days. At the end of the study, various parameters such as behavioral and biochemical investigations were assessed. Results: The result of the study shows that the shrimp (400 mg/kg) has better effect on the treatment of aluminum chloride-induced AD in rats. It showed a remarkable improvement in the behavioral and biochemical parameters, and the result of histopathology study shows that the hippocampus region of brain tissue recovered as compared with control. Conclusion: From this study, it is evident that dietary intake of shrimp can help to inhibit oxidative stress produced due to the accumulation of AlCl3 in the brain and used as a prophylactic for AD

    Discovery of High-Affinity Protein Binding Ligands – Backwards

    Get PDF
    BACKGROUND: There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards--i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a K(d)<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. CONCLUSIONS/SIGNIFICANCE: This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach

    The effect of long term combined yoga practice on the basal metabolic rate of healthy adults

    Get PDF
    BACKGROUND: Different procedures practiced in yoga have stimulatory or inhibitory effects on the basal metabolic rate when studied acutely. In daily life however, these procedures are usually practiced in combination. The purpose of the present study was to investigate the net change in the basal metabolic rate (BMR) of individuals actively engaging in a combination of yoga practices (asana or yogic postures, meditation and pranayama or breathing exercises) for a minimum period of six months, at a residential yoga education and research center at Bangalore. METHODS: The measured BMR of individuals practicing yoga through a combination of practices was compared with that of control subjects who did not practice yoga but led similar lifestyles. RESULTS: The BMR of the yoga practitioners was significantly lower than that of the non-yoga group, and was lower by about 13 % when adjusted for body weight (P < 0.001). This difference persisted when the groups were stratified by gender; however, the difference in BMR adjusted for body weight was greater in women than men (about 8 and 18% respectively). In addition, the mean BMR of the yoga group was significantly lower than their predicted values, while the mean BMR of non-yoga group was comparable with their predicted values derived from 1985 WHO/FAO/UNU predictive equations. CONCLUSION: This study shows that there is a significantly reduced BMR, probably linked to reduced arousal, with the long term practice of yoga using a combination of stimulatory and inhibitory yogic practices

    Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA)

    Full text link
    [EN] Ordinary thermogravimetric analysis (TG) and high-resolution TG tests were carried out on three different Portland cement pastes to study the phases present during the first day of hydration. Tests were run at 1, 6, 12 and 24 h of hydration, in order to determine the phases at these ages. High-resolution TG tests were used to separate decompositions presented in the 100¿200 C interval. The non-evaporable water determined by TG was used to determine hydration degree for the different ages. The effect of particle size distribution (PSD) on mineralogical evolution was established, as well as the addition of calcite as mineralogical filler. Finer PSD and calcite addition accelerate the hydration process, increasing the hydration degree on the first day of eaction between water and cement. According to high-resolution TG results, it was demonstrated that ettringite was the only decomposed phase in the 100¿200 C interval during the first 6 h of hydration for all studied cements. C-S-H phase starts to appear in all cements after 12 h of hydration.Funding was provided by Colciencias (Grant No. Convocatoria 567-2012).Gaviria, X.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Tobón, J. (2018). Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA). Journal of Thermal Analysis and Calorimetry. 132(1):39-46. https://doi.org/10.1007/s10973-017-6905-0S39461321Benboudjema F, Meftah JM, Torernti F. Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct. 2005;27:239–50.Holt E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cem Concr Res. 2005;35:464–72.Darquennes A, Staquet S, Delplancke-Ogletree MP, Espion B. Effect of autogenous deformation on the cracking risk of slag cement concretes. Cem Concr Compos. 2011;33:368–79.Slowik V, Schmidt M, Fritzsch R. Capillary pressure in fresh cement-based materials and identification of the air entry value. Cem Concr Compos. 2008;30(7):557–65.Evju C, Hansen S. Expansive properties of ettringite in a mixture of calcium aluminate cement, Portland cement and ß-calcium sulfate hemihydrates. Cem Concr Res. 2001;31:257–61.Bentz DP, Jensen OM, Hansen KK. Olesen, Stang, H. Haecker, C.J. Influence of cement particle-size distribution on early age autogenous strain and stresses in cement-based materials. J Am Ceram Soc. 2001;84(1):129–35.Barcelo L, Moranville M, Clavaud B. Autogenous shrinkage of concrete: a balance between autogenous swelling and self-desiccation. Cem Concr Res. 2005;35(1):177–83.Bouasker M, Mounanga P, Turcry P, Loukili A, Khelidj A. Chemical shrinkage of cement pastes and mortars at very early age: effect of limestone filler and granular inclusions. Cem Concr Compos. 2008;30(1):13–22.Bentz DP. A review of early-age properties of cement-based materials. Cem Concr Res. 2008;38(2):196–204.Ozawa T. Controlled rate thermogravimetry. New usefulness of controlled rate thermogravimetry revealed by decomposition of polyimide. J Therm Anal Calorim. 2000;59:375–84.Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH. Thermal analysis of construction materials. Building materials series. New York: Noyes Publications; 2003.Zanier A. High-resolution TG for the characterization of diesel fuel additives. J Therm Anal Calorim. 2001;64:377–84.Tobón JI, Payá J, Borrachero MV, Restrepo OJ. Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr Build Mater. 2012;36:736–42.Singh M, Waghmare S, Kumar V. Characterization of lime plasters used in 16th century Mughal Monument. J Archeol Sci. 2014;42:430–4.Majchrzak-Kuçeba I. Thermogravimetry applied to characterization of fly ash-based MCM-41 mesoporous materials. J Therm Anal Calorim. 2012;107:911–21.Silva ACM, Gálico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compounds evolved from the thermal decomposition of atenolol. J Therm Anal Calorim. 2014;115:2517–20.Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, Artiaga R. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.Yamarte L, Paxman D, Begum S, Sarkar P, Chambers A. TG measurement of reactivity of candidate oxygen carrier materials. J Therm Anal Calorim. 2014;116:1301–7.Borrachero MV, Payá J, Bonilla M, Monzó J. The use of thermogravimetric analysis technique for the characterization of construction materials. The gypsum case. J Therm Anal Calorim. 2008;91(2):503–9.Tobón JI, Payá J, Borrachero MV, Soriano L, Restrepo OJ. Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J Therm Anal Calorim. 2012;107:233–9.Kuzielova E, Žemlička M, Másilko, J, Palou, M.T. Effect of additives on the performance of Dyckerhoff cement, Class G, submitted to simulated hydrothermal curing. J Therm Anal Calorim. Accepted 29 Oct 2017Genc M, Genc ZK. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Therm Anal Calorim. Accepted 24 Oct 2017.Singh M, Kumar SV, Waghmare SA. The composition and technology of the 3–4th century CE decorative earthen plaster of Pithalkhora caves, India. J Archeol Sci. 2016;7:224–37.Liu L, Liu Q, Cao Y, Pan WP. The isothermal studies of char-CO2 gasification using the high-pressure thermo-gravimetric method. J Therm Anal Calorim. 2015;120:1877–82.Majchrzak-Kuce I, Bukalak-Gaik D. Regeneration performance of metal–organic frameworks TG-vacuum tests. J Therm Anal Calorim. 2016;125:1461–6.Ion RM, Radovici C, Fierascu RC, Fierascu I. Thermal and mineralogical investigations of iron archaeological Materials. J Therm Anal Calorim. 2015;121:1247–53.Rupasinghe M, San Nicolas R, Mendis P, Sofi M, Ngo T. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cem Concr Compos. 2017;80:17–30.Esteves PL. On the hydration of water-entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35.Riesen R. Adjustment of heating rate for maximum resolution in TG and TMA (MaxRes). J Therm Anal. 1998;53:365–74.Lim S, Mondal P. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials. Mater Charact. 2014;92:15–25.Gill PS, Sauerbrunn SR, Crowe BS. High resolution thermogravimetry. J Therm Anal. 1992;38:255–66.Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res. 2004;34:255–65.Zeng Q, Li K, Fen-chong T, Dangla P. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr Build Mater. 2012;27:560–9.Parrott LP, Geiker M, Gutteridge WA, Killoh D. Monitoring Portland cement hydration: Comparison of methods. Cem Concr Res. 1990;20:919–26.Hewlett PC. Lea’s chemistry of cement and concrete. 4th ed. Oxford: Elsevier Science & Technology Books; 2004.ASTM C305 Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International, West Conshohocken, PA; 2012.Taylor HF. Cement chemistry. 2nd ed. Westminster: Thomas Telford; 1997.Nadelman EI, Freas DJ, Kurtis KE. Nano- and microstructural characterization of Portland limestone cement paste. In: Nanotechnology in construction. Proceedings of NICOM 5. 2015. p. 87–92

    Valorizing the 'Irulas' traditional knowledge of medicinal plants in the Kodiakkarai Reserve Forest, India

    Get PDF
    A mounting body of critical research is raising the credibility of Traditional Knowledge (TK) in scientific studies. These studies have gained credibility because their claims are supported by methods that are repeatable and provide data for quantitative analyses that can be used to assess confidence in the results. The theoretical importance of our study is to test consensus (reliability/replicable) of TK within one ancient culture; the Irulas of the Kodiakkarai Reserve Forest (KRF), India. We calculated relative frequency (RF) and consensus factor (Fic) of TK from 120 Irulas informants knowledgeable of medicinal plants. Our research indicates a high consensus of the Irulas TK concerning medicinal plants. The Irulas revealed a diversity of plants that have medicinal and nutritional utility in their culture and specific ethnotaxa used to treat a variety of illnesses and promote general good health in their communities. Throughout history aboriginal people have been the custodians of bio-diversity and have sustained healthy life-styles in an environmentally sustainable manner. However this knowledge has not been transferred to modern society. We suggest this may be due to the asymmetry between scientific and TK, which demands a new approach that considers the assemblage of TK and scientific knowledge. A greater understanding of TK is beginning to emerge based on our research with both the Irulas and Malasars; they believe that a healthy lifestyle is founded on a healthy environment. These aboriginal groups chose to share this knowledge with society-at-large in order to promote a global lifestyle of health and environmental sustainability
    corecore