59 research outputs found

    Removal of Uracil by Uracil DNA Glycosylase Limits Pemetrexed Cytotoxicity: Overriding the Limit with Methoxyamine to Inhibit Base Excision Repair

    Get PDF
    Uracil DNA glycosylase (UDG) specifically removes uracil bases from DNA, and its repair activity determines the sensitivity of the cell to anticancer agents that are capable of introducing uracil into DNA. In the present study, the participation of UDG in the response to pemetrexed-induced incorporation of uracil into DNA was studied using isogenic human tumor cell lines with or without UDG (UDG+/+/UDG−/−). UDG−/− cells were very sensitive to pemetrexed. Cell killing by pemetrexed was associated with genomic uracil accumulation, stalled DNA replication, and catastrophic DNA strand breaks. By contrast, UDG+/+ cells were \u3e10 times more resistant to pemetrexed due to the rapid removal of uracil from DNA by UDG and subsequent repair of the resultant AP sites (abasic sites) via the base excision repair (BER). The resistance to pemetrexed in UDG+/+ cells could be reversed by the addition of methoxyamine (MX), which binds to AP sites and interrupts BER pathway. Furthermore, MX-bound AP sites induced cell death was related to their cytotoxic effect of dual inactivation of UDG and topoisomerase IIα, two genes that are highly expressed in lung cancer cells in comparison with normal cells. Thus, targeting BER-based therapy exhibits more selective cytotoxicity on cancer cells through a synthetic lethal mechanism

    Topoisomerase IIα Binding Domains of Adenomatous Polyposis Coli Influence Cell Cycle Progression and Aneuploidy

    Get PDF
    Truncating mutations in the tumor suppressor gene APC (Adenomatous Polyposis Coli) are thought to initiate the majority of colorectal cancers. The 15- and 20-amino acid repeat regions of APC bind beta-catenin and have been widely studied for their role in the negative regulation of canonical Wnt signaling. However, functions of APC in other important cellular processes, such as cell cycle control or aneuploidy, are only beginning to be studied. Our previous investigation implicated the 15-amino acid repeat region of APC (M2-APC) in the regulation of the G2/M cell cycle transition through interaction with topoisomerase IIalpha (topo IIalpha).We now demonstrate that the 20-amino acid repeat region of APC (M3-APC) also interacts with topo IIalpha in colonic epithelial cells. Expression of M3-APC in cells with full-length endogenous APC causes cell accumulation in G2. However, cells with a mutated topo IIalpha isoform and lacking topo IIbeta did not arrest, suggesting that the cellular consequence of M2- or M3-APC expression depends on functional topoisomerase II. Both purified recombinant M2- and M3-APC significantly enhanced the activity of topo IIalpha. Of note, although M3-APC can bind beta-catenin, the G2 arrest did not correlate with beta-catenin expression or activity, similar to what was seen with M2-APC. More importantly, expression of either M2- or M3-APC also led to increased aneuploidy in cells with full-length endogenous APC but not in cells with truncated endogenous APC that includes the M2-APC region.Together, our data establish that the 20-amino acid repeat region of APC interacts with topo IIalpha to enhance its activity in vitro, and leads to G2 cell cycle accumulation and aneuploidy when expressed in cells containing full-length APC. These findings provide an additional explanation for the aneuploidy associated with many colon cancers that possess truncated APC

    Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p

    Midkine is expressed and differentially processed during COPD exacerbations and ventilator-associated pneumonia associated with Staphylococcus aureus infection.

    No full text
    Staphylococcus aureus is sometimes isolated from the airways during acute exacerbations of chronic obstructive pulmonary disease (COPD) but more commonly recognized as a cause of ventilator-associated pneumonia (VAP). Antimicrobial proteins, among them midkine (MK), are an important part of innate immunity in the airways. In this study, the levels and possible processing of MK in relation to S. aureus infection of the airways were investigated, comparing COPD and VAP, thus comparing a state of disease with preceding chronic inflammation and remodeling (COPD) with acute inflammation (i.e. VAP). MK was detected in the small airways and alveoli of COPD lung tissue but less so in normal lung tissue. MK at below micromolar concentrations killed S. aureus in vitro. Proteolytic processing of MK by the staphylococcal metalloprotease AL but not cysteine protease SA, resulted in impaired bactericidal activity. Degradation was foremost seen in the COOH-terminal portion of the molecule that harbors high bactericidal activity. In addition, MK was detected in sputum from patients suffering from VAP caused by S. aureus but less so in sputum from COPD-exacerbations associated with the same bacterium. Recombinant MK was degraded more rapidly in sputum from the COPD patients than from the VAP patients and a greater proteolytic activity in COPD sputum was confirmed by zymography. Taken together, proteases of both bacteria and the host contribute to degradation of the antibacterial protein MK, resulting in an impaired defense of the airways, in particular in COPD where the state of chronic inflammation could be of importance
    • …
    corecore