9 research outputs found

    Cell Cycle-Related Cyclin B1 Quantification

    Get PDF
    To obtain non-relative measures of cell proteins, purified preparations of the same proteins are used as standards in Western blots. We have previously quantified SV40 large T antigen expressed over a several fold range in different cell lines and correlated the average number of molecules to average fluorescence obtained by cytometry and determined cell cycle phase related expression by calculation from multi-parametric cytometry data. Using a modified approach, we report quantification of endogenous cyclin B1 and generation of the cell cycle time related expression profile.Recombinant cyclin B1 was purified from a baculovirus lysate using an antibody affinity column and concentrated. We created fixed cell preparations from nocodazole-treated (high cyclin B1) and serum starved (low cyclin B1) PC3 cells that were either lyophilized (for preservation) or solubilized. The lysates and purified cyclin B1 were subjected to Western blotting; the cell preparations were subjected to cytometry, and fluorescence was correlated to molecules. Three untreated cell lines (K562, HeLa, and RKO) were prepared for cytometry without lyophilization and also prepared for Western blotting. These were quantified by Western blotting and by cytometry using the standard cell preparations.The standard cell preparations had 1.5 x 10(5) to 2.5 x 10(6) molecules of cyclin B1 per cell on average (i.e., 16-fold range). The average coefficient of variation was 24%. Fluorescence varied 12-fold. The relationship between molecules/cell (Western blot) and immunofluorescence (cytometry) was linear (r(2) = 0.87). Average cyclin B1 levels for the three untreated cell lines determined by Western blotting and cytometry agreed within a factor of 2. The non-linear rise in cyclin B1 in S phase was quantified from correlated plots of cyclin B1 and DNA content. The peak levels achieved in G2 were similar despite differences in lineage, growth conditions, and rates of increase through the cell cycle (range: 1.6-2.2 x 10(6) molecules per cell).Net cyclin B1 expression begins in G1 in human somatic cells lines; increases non-linearly with variation in rates of accumulation, but peaks at similar peak values in different cell lines growing under different conditions. This suggests tight quantitative end point control

    Dynamic Epitope Expression from Static Cytometry Data: Principles and Reproducibility

    Get PDF
    Background: An imprecise quantitative sense for the oscillating levels of proteins and their modifications, interactions, and translocations as a function of the cell cycle is fundamentally important for a cartoon/narrative understanding for how the cell cycle works. Mathematical modeling of the same cartoon/narrative models would be greatly enhanced by an openended methodology providing precise quantification of many proteins and their modifications, etc. Here we present methodology that fulfills these features. Methodology: Multiparametric flow cytometry was performed on Molt4 cells to measure cyclins A2 and B1, phospho-S10histone H3, DNA content, and light scatter (cell size). The resulting 5 dimensional data were analyzed as a series of bivariate plots to isolate the data as segments of an N-dimensional ‘‘worm’ ’ through the data space. Sequential, unidirectional regions of the data were used to assemble expression profiles for each parameter as a function of cell frequency. Results: Analysis of synthesized data in which the true values where known validated the approach. Triplicate experiments demonstrated exceptional reproducibility. Comparison of three triplicate experiments stained by two methods (single cyclin or dual cyclin measurements with common DNA and phospho-histone H3 measurements) supported the feasibility of combining an unlimited number of epitopes through this methodology. The sequential degradations of cyclin A2 followed by cyclin B1 followed by de-phosphorylation of histone H3 were precisely mapped. Finally, a two phase expression rat

    Growth, immortalization, and differentiation potential of normal adult human proximal tubule cells

    Get PDF
    Human proximal tubule epithelial cell lines are potentially useful models to elucidate the complex cellular and molecular details of water and electrolyte homeostasis in the kidney. Samples of normal adult human kidney tissue were obtained from surgical specimens, and S1 segments of proximal convoluted tubules were microdissected, placed on collagen-coated culture plate inserts, and cocultured with lethally irradiated 3T3 fibroblasts. Primary cultures of proximal tubule epithelial cells were infected with a replication-defective retroviral construct encoding either wild-type or temperature-sensitive simian virus 40 large T-antigen. Cells forming electrically resistive monolayers were selected and expanded in culture. Three cell lines (HPCT-03-ts, HPCT-05-wt, and HPCT-06-wt) were characterized for proximal tubule phenotype by electron microscopy, electrophysiology, immunofluorescence, Southern hybridization, and reverse transcriptase-polymerase chain reaction. Each of the three formed polarized, resistive epithelial monolayers with apical microvilli, tight junctional complexes, numerous mitochondria, well-developed Golgi complexes, extensive endoplasmic reticulum, convolutions of the basolateral plasma membrane, and a primary cilium. Each exhibited succinate, phosphate, and Na,K-adenosine triphosphatase (ATPase) transport activity, as well as acidic dipeptide- and adenosine triphosphate-regulated meehanisms of ion transport. Transcripts for Na+-bicarbonate cotransporter, Na+-H+ exchanger isoform 3, Na,K-ATPase, parathyroid hormone receptor, epidermal growth factor receptor, and vasopressin V2 receptor were identified. Furthermore, immunoreactive sodium phosphate cotransporter type II, vasopressin receptor V1a, and CLIC-1 (NCC27) were also identified. These well-differentiated, transport-competent cell lines demonstrated the growth, immortalization, and differentiation potential of normal, adult, human proximal tubule cells and consequently have wide applicability in cell biology and renal physiology.link_to_subscribed_fulltex
    corecore