16 research outputs found

    A Primary Prevention Clinical Risk Score Model for Patients With Brugada Syndrome (BRUGADA-RISK)

    Get PDF
    OBJECTIVES: The goal of this study was to develop a risk score model for patients with Brugada syndrome (BrS). BACKGROUND: Risk stratification in BrS is a significant challenge due to the low event rates and conflicting evidence. METHODS: A multicenter international cohort of patients with BrS and no previous cardiac arrest was used to evaluate the role of 16 proposed clinical or electrocardiogram (ECG) markers in predicting ventricular arrhythmias (VAs)/sudden cardiac death (SCD) during follow-up. Predictive markers were incorporated into a risk score model, and this model was validated by using out-of-sample cross-validation. RESULTS: A total of 1,110 patients with BrS from 16 centers in 8 countries were included (mean age 51.8 ± 13.6 years; 71.8% male). Median follow-up was 5.33 years; 114 patients had VA/SCD (10.3%) with an annual event rate of 1.5%. Of the 16 proposed risk factors, probable arrhythmia-related syncope (hazard ratio [HR]: 3.71; p < 0.001), spontaneous type 1 ECG (HR: 3.80; p < 0.001), early repolarization (HR: 3.42; p < 0.001), and a type 1 Brugada ECG pattern in peripheral leads (HR: 2.33; p < 0.001) were associated with a higher risk of VA/SCD. A risk score model incorporating these factors revealed a sensitivity of 71.2% (95% confidence interval: 61.5% to 84.6%) and a specificity of 80.2% (95% confidence interval: 75.7% to 82.3%) in predicting VA/SCD at 5 years. Calibration plots showed a mean prediction error of 1.2%. The model was effectively validated by using out-of-sample cross-validation according to country. CONCLUSIONS: This multicenter study identified 4 risk factors for VA/SCD in a primary prevention BrS population. A risk score model was generated to quantify risk of VA/SCD in BrS and inform implantable cardioverter-defibrillator prescription

    Adult neural stem cells in distinct microdomains generate previously unknown interneuron types.

    Get PDF
    Throughout life, neural stem cells (NSCs) in different domains of the ventricular-subventricular zone (V-SVZ) of the adult rodent brain generate several subtypes of interneurons that regulate the function of the olfactory bulb. The full extent of diversity among adult NSCs and their progeny is not known. Here, we report the generation of at least four previously unknown olfactory bulb interneuron subtypes that are produced in finely patterned progenitor domains in the anterior ventral V-SVZ of both the neonatal and adult mouse brain. Progenitors of these interneurons are responsive to sonic hedgehog and are organized into microdomains that correlate with the expression domains of the Nkx6.2 and Zic family of transcription factors. This work reveals an unexpected degree of complexity in the specification and patterning of NSCs in the postnatal mouse brain

    Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes

    No full text
    corecore