2,406 research outputs found
MoleculeâInduced Radical Formation (MIRF) ReactionsâA Reappraisal
Radical chain reactions are commonly initiated through the thermal or photochemical activation of purposeâbuilt initiators, through photochemical activation of substrates, or through wellâdesigned redox processes. Where radicals come from in the absence of these initiation strategies is much less obvious and are often assumed to derive from unknown impurities. In this situation, moleculeâinduced radical formation (MIRF) reactions should be considered as wellâdefined alternative initiation modes. In the most general definition of MIRF reactions, two closedâshell molecules react to give a radical pair or biradical. The exact nature of this transformation depends on the Ïâ or Ïâbonds involved in the MIRF process, and this Minireview specifically focuses on reactions that transform two Ïâbonds into two radicals and a closedâshell product molecule
Comparison of two methods for describing the strain profiles in quantum dots
The electronic structure of interfaces between lattice-mismatched
semiconductor is sensitive to the strain. We compare two approaches for
calculating such inhomogeneous strain -- continuum elasticity (CE, treated as a
finite difference problem) and atomistic elasticity (AE). While for small
strain the two methods must agree, for the large strains that exist between
lattice-mismatched III-V semiconductors (e.g. 7% for InAs/GaAs outside the
linearity regime of CE) there are discrepancies. We compare the strain profile
obtained by both approaches (including the approximation of the correct C_2
symmetry by the C_4 symmetry in the CE method), when applied to C_2-symmetric
InAs pyramidal dots capped by GaAs.Comment: To appear in J. Appl. Physic
Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots
We report significant deviations from the usual quadratic dependence of the
ground state interband transition energy on applied electric fields in
InAs/GaAs self-assembled quantum dots. In particular, we show that conventional
second-order perturbation theory fails to correctly describe the Stark shift
for electric field below kV/cm in high dots. Eight-band calculations demonstrate this effect is predominantly due to
the three-dimensional strain field distribution which for various dot shapes
and stoichiometric compositions drastically affects the hole ground state. Our
conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure
Structure of the Draco Dwarf Spheroidal Galaxy
This article studies the structure of the Draco dwarf spheroidal galaxy with
an emphasis on the question of whether the spatial distribution of its stars
has been affected by the tidal interaction with the Milky Way, using R- and
V-band CCD photometry for eleven fields. The article reports coordinates for
the center, a position angle of the major axis, and the ellipticity. It also
reports the results of searches for asymmetries in the structure of Draco.
These results, and searches for a ``break'' in the radial profile and for the
presence of principal sequences of Draco in a color-magnitude diagram for
regions more than 50 arcmin from the center, yield no evidence that tidal
forces from the Milky Way have affected the structure of Draco.Comment: 25 pages, 11 figures, 3 tables. Accepted for publication in A
Computerized system for translating a torch head
The system provides a constant travel speed along a contoured workpiece. It has a driven skate characterized by an elongated bed, with a pair of independently pivoted trucks connected to the bed for support. The trucks are mounted on a contoured track of arbitrary configuration in a mutually spaced relation. An axially extensible torch head manipulator arm is mounted on the bed of the carriage and projects perpendicular from the midportion. The torch head is mounted at its distal end. A real-time computerized control drive subsystem is used to advance the skate along the track of a variable rate for maintaining a constant speed for the torch head tip, and to position the torch axis relative to a preset angle to the workpiece
- âŠ