201 research outputs found

    Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry

    Get PDF
    A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate's 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans

    Do Plant Secondary Metaboliteā€Containing Forages Influence Soil Processes in Pasture Systems?

    Get PDF
    Grazed pastures are susceptible to N loss from urine/manure additions, which increases eutrophication, affecting the global N cycle. Plant secondary metabolites (PSM), such as condensed tannins (CT) and terpenes, influence silviculture soil dynamics by generally decreasing N mineralization. We investigated whether cattleā€grazed pastures of nonā€traditional grass and legume forage monoculture strips including CTā€containing sainfoin (Onobrychis viciifolia Scop.) and tall fescue (TF) [Schedonorus arundinaceus (Schreb.) Dumort.] influenced soil dynamics compared with traditional grass and legume forage monoculture strips of alfalfa (Medicago sativa L.), without tannins, and TF. Throughout the study, CT in sainfoin averaged 58.9 g kgāˆ’1 whereas alfalfa saponins averaged 5.7 g kgāˆ’1. We observed greater soil microbial respiration (p = .01) in TF strips than legume strips, indicating greater microbial activity, and between legumes we found greater soil NO3 (p = .01) in alfalfa than in sainfoin, although aboveground biomass and N differences were negligible. We also conducted a laboratory soilā€feces incubation study to determine if feces from cattle foraging diets of legumes with or without CT influenced soil dynamics. Both feces treatments showed lower NO3 (p \u3c .001) than without feces, suggesting microbial inhibition. Dehydrogenase activity (DHEA) was lower (p = .03) in sainfoin than alfalfa feces, suggesting CT from sainfoin inhibit DHEA. To our knowledge this study is the first considering whether CTā€containing sainfoin and saponinā€containing alfalfa influence soil dynamics by assessing general differences in soil parameters. More research is needed to determine whether specific PSM mitigate N loss in pasture systems by slowing N mineralization

    Prevalence and Profile of Nonalcoholic Fatty Liver Disease in Lean Adults: Systematic Review and Meta-Analysis.

    Get PDF
    Data on prevalence and profile of nonalcoholic fatty liver disease (NAFLD) among individuals who are lean (normal body mass index) is unclear. Published data from studies comparing lean with obese NAFLD or with healthy subjects on prevalence, comorbidities, liver chemistry and histology, and metabolic/inflammatory markers were analyzed. Data were reported as odds ratio and 95% confidence interval for categorical variables and difference of means for continuous variables. Analysis of 53 studies on 65,029 subjects with NAFLD (38,084 lean) and 249,544 healthy subjects showed a prevalence of lean NAFLD at 11.2% in the general population. Among individuals with NAFLD, the prevalence of lean NAFLD was 25.3%. Lean NAFLD versus healthy subjects had higher odds for abnormalities on metabolic profile, including metabolic syndrome and its components, renal and liver function, and patatin-like phospholipase domain-containing protein 3 (PNPLA3) G allele; and inflammatory profile, including uric acid and C-reactive protein. The abnormalities were less severe among lean versus obese NAFLD on metabolic syndrome with its components, renal and liver chemistry, liver stiffness measurement, PNPLA3 and transmembrane 6 superfamily member 2 polymorphisms, and uric acid levels as markers of inflammation. Lean NAFLD had less severe histologic findings, including hepatocyte ballooning, lobular inflammation, NAFLD activity score, and fibrosis stage. Limited data also showed worse outcomes between obese versus lean NAFLD. Conclusion: Lean NAFLD is a distinct entity with metabolic, biochemical, and inflammatory abnormalities compared to healthy subjects and a more favorable profile, including liver histology of steatohepatitis and fibrosis stage, compared to obese NAFLD. We suggest that prospective multicenter studies examine long-term hepatic and extrahepatic outcomes in individuals with lean NAFLD

    Cyclic Symmetry Finite Element Forced Response Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion

    Get PDF
    Accurate prediction of the blade vibration stress is required to determine overall durability of fan blade design under Boundary Layer Ingestion (BLI) distorted flow environments. Traditional single blade modeling technique is incapable of representing accurate modeling for the entire rotor blade system subject to complex dynamic loading behaviors and vibrations in distorted flow conditions. A particular objective of our work was to develop a high-fidelity full-rotor aeromechanics analysis capability for a system subjected to a distorted inlet flow by applying cyclic symmetry finite element modeling methodology. This reduction modeling method allows computationally very efficient analysis using a small periodic section of the full rotor blade system. Experimental testing by the use of the 8-foot by 6-foot Supersonic Wind Tunnel Test facility at NASA Glenn Research Center was also carried out for the system designated as the Boundary Layer Ingesting Inlet/Distortion-Tolerant Fan (BLI2DTF) technology development. The results obtained from the present numerical modeling technique were evaluated with those of the wind tunnel experimental test, toward establishing a computationally efficient aeromechanics analysis modeling tool facilitating for analyses of the full rotor blade systems subjected to a distorted inlet flow conditions. Fairly good correlations were achieved hence our computational modeling techniques were fully demonstrated. The analysis result showed that the safety margin requirement set in the BLI2DTF fan blade design provided a sufficient margin with respect to the operating speed range

    Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    Get PDF
    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years

    Wireless Inductive Power Device Suppresses Blade Vibrations

    Get PDF
    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it possible to moderate vibration on or in turbomachinery blades by providing 100 W of wireless electrical power and actuation control to thin, lightweight vibration-suppressing piezoelectric patches (eight actuation and eight sensor patches in this prototype, for a total of 16 channels) positioned strategically on the surface of, or within, titanium fan blades, or embedded in composite fan blades. This approach moves significantly closer to the ultimate integration of "active" vibration suppression technology into jet engines and other turbomachinery devices such as turbine electrical generators used in the power industry. The novel feature of this device is in its utilization of wireless technology to simultaneously sense and actively control vibration in rotating or stationary turbomachinery blades using piezoelectric patches. In the past, wireless technology was used solely for sensing and diagnostics. This technology, however, will accomplish much more, in terms of simultaneously sensing, suppressing blade vibration, and making it possible for detailed study of vibration impact in turbomachinery blades

    System for Suppressing Vibration in Turbomachine Components

    Get PDF
    Disclosed is a system for suppressing vibration and noise mitigation in structures such as blades in turbomachinery. The system includes flexible piezoelectric patches which are secured on or imbedded in turbomachinery blades which, in one embodiment, comprises eight (8) fan blades. The system further includes a capacitor plate coupler and a power transfer apparatus, which may both be arranged into one assembly, that respectively transfer data and power. Each of the capacitive plate coupler and power transfer apparatus is configured so that one part is attached to a fixed member while another part is attached to a rotatable member with an air gap there between. The system still further includes a processor that has 16 channels, eight of which serve as sensor channels, and the remaining eight, serving as actuation channels. The processor collects and analyzes the sensor signals and, in turn, outputs corrective signals for vibration/noise suppression of the turbine blades

    Dirac gaugino as leptophilic dark matter

    Full text link
    We investigate the leptophilic properties of Dirac gauginos in an R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors. The annihilation of Dirac gauginos to leptons requires no chirality flip in the final states so that it is not suppressed as in the Majorana case. This implies that it can be sizable enough to explain the positron excess observed by the PAMELA experiment with moderate or no boost factors. When squark masses are heavy, the annihilation of Dirac gauginos to hadrons is controlled by their Higgsino fraction and is driven by the hZhZ and W+Wāˆ’W^+W^- final states. Moreover, at variance with the Majorana case, Dirac gauginos with a non-vanishing higgsino fraction can also have a vector coupling with the ZZ gauge boson leading to a sizable spin--independent scattering cross section off nuclei. Saturating the current antiproton limit, we show that Dirac gauginos can leave a signal in direct detection experiments at the level of the sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on JCA

    Aeromechanics Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion

    Get PDF
    A propulsion system with Boundary Layer Ingestion (BLI) has the potential to significantly reduce aircraft engine fuel burn. But a critical challenge is to design a fan that can operate continuously with a persistent BLI distortion without aeromechanical failure -- flutter or high cycle fatigue due to forced response. High-fidelity computational aeromechanics analysis can be very valuable to support the design of a fan that has satisfactory aeromechanic characteristics and good aerodynamic performance and operability. Detailed aeromechanics analyses together with careful monitoring of the test article is necessary to avoid unexpected problems or failures during testing. In the present work, an aeromechanics analysis based on a three-dimensional, time-accurate, Reynolds-averaged Navier-Stokes computational fluid dynamics code is used to study the performance and aeromechanical characteristics of the fan in both circumferentially-uniform and circumferentially-varying distorted flows. Pre-test aeromechanics analyses are used to prepare for the wind tunnel test and comparisons are made with measured blade vibration data after the test. The analysis shows that the fan has low levels of aerodynamic damping at various operating conditions examined. In the test, the fan remained free of flutter except at one near-stall operating condition. Analysis could not be performed at this low mass flow rate operating condition since it fell beyond the limit of numerical stability of the analysis code. The measured resonant forced response at a specific low-response crossing indicated that the analysis under-predicted this response and work is in progress to understand possible sources of differences and to analyze other larger resonant responses. Follow-on work is also planned with a coupled inlet-fan aeromechanics analysis that will more accurately represent the interactions between the fan and BLI distortion
    • ā€¦
    corecore