5 research outputs found

    Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures

    No full text
    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n- or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si: H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si: H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Omega sq(-1) to 1260 Omega sq(-1) for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm(2) V-1 s(-1) indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si: H is a viable route for large scale graphene based solar cells or display applications © 2016 IOP Publishing Ltd1331sciescopu

    In-Plane Epitaxial Growth of Silicon Nanowires and Junction Formation on Si(100) Substrates

    No full text
    International audienceGrowing self-assembled silicon nanowires (SiNWs) into precise locations represents a critical capability to scale up SiNW-based functionalities. We here report a novel epitaxy growth phenomenon and strategy to fabricate orderly arrays of self-aligned in-plane SiNWs on Si(100) substrates following exactly the underlying crystallographic orientations. We observe also a rich set of distinctive growth dynamics/modes that lead to remarkably different morphologies of epitaxially grown SiNWs/or grains under variant growth balance conditions. High-resolution transmission electron microscopy cross-section analysis confirms a coherent epitaxy (or partial epitaxy) interface between the in-plane SiNWs and the Si(100) substrate, while conductive atomic force microscopy characterization reveals that electrically rectifying p-n junctions are formed between the p-type doped in-plane SiNWs and the n-type c-Si(100) substrate. This in-plane epitaxy growth could provide an effective means to define nanoscale junction and doping profiles, providing a basis for exploring novel nanoelectronics
    corecore