8,072 research outputs found

    Radial Velocities and Pulsation Ephemerides of 11 Field RR Lyrae Stars

    Get PDF
    We present new radial velocities, improved pulsation periods and reference epoch s of 11 field RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps and Z Mic. This study is based on high resolution spectra obtained with the echelle spectro graph of the 2.5-m du Pont telescope at Las Campanas Observatory. We obtained ~200 spectra per star (i.e, total of ~2300 spectra) distributed more or less uniformly throughout their pulsation cycles. Radial velocity curves and photometric lightcurves phased to our new ephemerides are presented for all program stars. In a subsequent paper, we will use these spectra to derive stellar atmospheric parameters and chemical compositions throughout the pulsational cycles, based purely on spectroscopic constraints.Comment: 28 pages, 14 figures, 5 tables. Accepted for publication in ApJ

    Cosmological backreaction in higher-derivative gravity expansions

    Full text link
    We calculate a general effective stress-energy tensor induced by cosmological inhomogeneity in effective theories of gravity where the action is Taylor-expandable in the Riemann tensor and covariant derivatives of the Riemann tensor. This is of interest as an effective fluid that might provide an alternative to the cosmological constant, but it also applies to gravitational waves. We use an adaptation of Green and Wald's weak-averaging framework, which averages over perturbations in the field equation where the perturbation length scales are small compared to the averaging scale. In this adaptation, the length scale of the effective theory, 1/M1/M, is also taken to be small compared with the averaging scale. This ensures that the perturbation length scales remain in fixed proportion to the length scale of the effective theory as the cosmological averaging scale is taken to be large. We find that backreaction from higher-derivative terms in the effective action can continue to be important in the late universe, given a source of sufficiently high-frequency metric perturbations. This backreaction might also provide a window on exotic particle physics in the far ultraviolet.Comment: 27 pages, 2 references added, minor clarifications made, comments added to introduction and discussion, some details moved to appendice

    Axial rotation and turbulence of RR ab stars: the Peterson Conundrum revisited

    Full text link
    We calibrate and then use the relation between equivalent width (EW) and full-width-half-maximum (FWHM) of metallic absorption lines in the spectra of RR Lyrae stars to estimate a new upper limit of Vrot sini less than or equal to 6 km/s on their axial equatorial rotational velocities, and to derive the variations of macroturbulent velocities in their atmospheres during pulsation cycles. Finally, we present a simple way to estimate macroturbulent/rotational velocity from FWHM of the cross-correlation function.Comment: 15 pages, 7 figures, 1 table. EAS Publications Series.: "New advances in stellar physics: from microscopic to macroscopic processes", 27-31 May 2013, Roscoff, Franc

    A light-cone gauge for black-hole perturbation theory

    Get PDF
    The geometrical meaning of the Eddington-Finkelstein coordinates of Schwarzschild spacetime is well understood: (i) the advanced-time coordinate v is constant on incoming light cones that converge toward r=0, (ii) the angles theta and phi are constant on the null generators of each light cone, (iii) the radial coordinate r is an affine-parameter distance along each generator, and (iv) r is an areal radius, in the sense that 4 pi r^2 is the area of each two-surface (v,r) = constant. The light-cone gauge of black-hole perturbation theory, which is formulated in this paper, places conditions on a perturbation of the Schwarzschild metric that ensure that properties (i)--(iii) of the coordinates are preserved in the perturbed spacetime. Property (iv) is lost in general, but it is retained in exceptional situations that are identified in this paper. Unlike other popular choices of gauge, the light-cone gauge produces a perturbed metric that is expressed in a meaningful coordinate system; this is a considerable asset that greatly facilitates the task of extracting physical consequences. We illustrate the use of the light-cone gauge by calculating the metric of a black hole immersed in a uniform magnetic field. We construct a three-parameter family of solutions to the perturbative Einstein-Maxwell equations and argue that it is applicable to a broader range of physical situations than the exact, two-parameter Schwarzschild-Melvin family.Comment: 12 page

    Light-cone coordinates based at a geodesic world line

    Get PDF
    Continuing work initiated in an earlier publication [Phys. Rev. D 69, 084007 (2004)], we construct a system of light-cone coordinates based at a geodesic world line of an arbitrary curved spacetime. The construction involves (i) an advanced-time or a retarded-time coordinate that labels past or future light cones centered on the world line, (ii) a radial coordinate that is an affine parameter on the null generators of these light cones, and (iii) angular coordinates that are constant on each generator. The spacetime metric is calculated in the light-cone coordinates, and it is expressed as an expansion in powers of the radial coordinate in terms of the irreducible components of the Riemann tensor evaluated on the world line. The formalism is illustrated in two simple applications, the first involving a comoving world line of a spatially-flat cosmology, the other featuring an observer placed on the axis of symmetry of Melvin's magnetic universe.Comment: 11 pages, 1 figur

    The Chemical Compositions Of RR Lyrae Type C Variable Stars

    Get PDF
    We present a detailed chemical abundance study of eight RR Lyrae variable stars of subclass c (RRc). The target RRc stars chosen for study exhibit "Blazhko-effect" period and amplitude modulations to their pulsational cycles. Data for this study were gathered with the echelle spectrograph of the 100 inch du Pont telescope at Las Campanas Observatory. Spectra were obtained throughout each star's pulsation cycle. Atmospheric parameters-effective temperature, surface gravity, microturbulent velocity, and metallicity-were derived at multiple phase points. We found metallicities and element abundance ratios to be constant within observational uncertainties over the pulsational cycles of all stars. Moreover, the alpha-element and Fe-group abundance ratios with respect to iron are consistent with other horizontal-branch members (RRab, blue and red non-variables). Finally, we have used the [Fe/H] values of these eight RRc stars to anchor the metallicity estimates of a large-sample RRc snapshot spectroscopic study being conducted with the same telescope and instrument combination employed here.NSF AST-0908978, AST-1211585Baker Centennial Research EndowmentJohn W. Cox Endowment for the Advanced Studies in AstronomyMcDonald Observator
    corecore