102 research outputs found

    Phenotypical Characters Associated with the Loss of the Seed and the Production of Biomass in \u3ci\u3ePanicum coloratum\u3c/i\u3e var. \u3ci\u3emakarikariense\u3c/i\u3e

    Get PDF
    Since the beginning of humanity, plants have been manipulated by humans by artificial selection to obtain changes in their characteristics. This progress has been achieved through the domestication of the species. Panicum coloratum is a species of summer perennial grass, megathermic, tolerates waterlogging, cold and slightly saline soils. It is of African origin and used as fodder in various parts of the world. In Argentina around 130.500 hectares are sown, the most widespread varieties are: var. coloratum, and var. makarikariense Goossens. Its characteristics of determined flowering and ununiform ripening within the panicle, added to a very low retention of the seeds after maturation, establish serious difficulties in harvesting quality seeds. Megathermic forage species are good producers in forage quantity and, in turn, possess good quality. The objective of the work was to study the dynamics of seed dehiscence and the forage production of two cultivars of Panicum coloratum var. makarikariense (cv. Kapivera and cv. Bambatsi). The seed fall was evaluated weekly for 70 days between March-May 2017 and 2019 on 15 random inflorescences of each cultivar. Once the seed harvest was completed in May 2017 and 2019, the panicles were cut and the panicle height, panicle length, rachis length, wet weight, dry weight and percentage of dry matter were analyzed. Through a χ² distribution, it was found that there is experimental evidence that indicates that the dynamics of seed fall are different among cultivars. An analysis of main components was carried out in each year under study to simultaneously evaluate all the variables related to biomass, in the two ACPs mentioned there was not a defined grouping of the plants according to the cultivation to which they correspond

    Patients with rheumatoid arthritis have an altered circulatory aggrecan profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) is a chronic auto-immune disease with extensive articular cartilage destruction. Aggrecan depletion, mediated by aggrecanases is one of the first signs of early cartilage erosion. We investigated, whether measurement of aggrecan and fragments thereof in serum, could be used as biomarkers for joint-disease in RA patients and furthermore characterized the fragments found in the circulation.</p> <p>Methods</p> <p>The study consisted of 38 patients, 12 males (62.2 ± 16.0 years) and 26 females (59.8 ± 20.7 years) diagnosed with RA: 41.5 ± 27.5 mm/h erythrocyte sedimentation rate (ESR), 38.4 ± 34.7 mg/ml C-reactive protein (CRP) and 4.8 ± 1.7 disease activity score (DAS) and 108 healthy age-matched controls. Aggrecan levels were measured using two immunoassays, i.e. the <sup>374</sup>ARGSVI-G2 sandwich ELISA measuring aggrecanase-mediated aggrecan degradation and the G1/G2 sandwich assay, detecting aggrecan molecules containing G1 and/or G2 (total aggrecan) We further characterized serum samples by western blots, by using monoclonal antibodies F-78, binding to G1 and G2, or by BC-3, detecting the aggrecanase-generated N-terminal <sup>374</sup>ARGSVI neo-epitope.</p> <p>Results</p> <p>Total aggrecan levels in RA patients were significantly decreased from 824.8 ± 31 ng/ml in healthy controls to 570.5 ± 30 ng/ml (31% decrease, P < 0.0001), as measured by the G1/G2 ELISA. Western blot analysis with F-78 showed one strong band at 10 kDa, and weaker bands at 25 and 45 kDa in both healthy controls and RA patients. In contrast, staining for aggrecanase-activity revealed only one strong band in RA patients of 45 kDa.</p> <p>Conclusion</p> <p>This is the first study, which characterizes different aggrecan fragments in human serum. The data strongly suggests that total aggrecan levels, i.e. aggrecan molecules containing G1 and/or G2 are lower in RA patients, and that RA patients have at least one specific subpopulation of aggrecan fragments, namely aggrecanse generated <sup>374</sup>ARGSVI fragments. Further clinical studies are needed to investigate the potential of G1/G2 as a structure-related biochemical marker in destructive joint-diseases.</p

    Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes <it>in vitro</it>. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.</p> <p>Methods</p> <p>TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.</p> <p>Results</p> <p>TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE<sub>2</sub>, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.</p> <p>Conclusions</p> <p>TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.</p
    corecore