7,672 research outputs found

    Viscous Hydrodynamics and Relativistic Heavy Ion Collisions

    Full text link
    The matter created in relativistic heavy ion collisions is fairly well described by ideal hydrodynamics, and somewhat better described by viscous hydrodynamics. To this point, most viscous calculations have been two-dimensional, based on an assumption of Bjorken boost invariance along the beam axis. Here, first results are presented for a fully three-dimensional viscous model. The model is described and tests of the numerical accuracy of the code are presented. Two- and three-dimensional runs are compared, and modest changes are observed for mid-rapidity observables at the highest RHIC (Relativistic Heavy Ion Collider) energies.Comment: 23 pages, 7 figure

    Analyzing Correlation Functions with Tesseral and Cartesian Spherical Harmonics

    Get PDF
    The dependence of inter-particle correlations on the orientation of particle relative-momentum can yield unique information on the space-time features of emission in reactions with multiparticle final states. In the present paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and the real cartesian harmonics. Mathematical properties of the lesser-known cartesian harmonics are illuminated. The physical content of different angular harmonic components in a correlation is described. The resolving power of different final-state effects with regarding to determining angular features of emission regions is investigated. The considered final-state effects include identity interference and strong and Coulomb interactions. The correlation analysis in terms of spherical harmonics is illustrated with the cases of gaussian and blast-wave sources for proton-charged meson and baryon-baryon pairs.Comment: 32 pages 10 figure

    New multi-channel electron energy analyzer with cylindrically symmetrical electrostatic field

    Get PDF
    This paper discusses an electron energy analyzer with a cylindrically symmetrical electrostatic field, designed for rapid Auger analysis. The device was designed and built. The best parameters of the analyzer were estimated and then experimentally verified.Comment: 5 pages, 4 figure

    The phase transition in the localized ferromagnet EuO probed by muSR

    Get PDF
    We report results of muon spin rotation measurements performed on the ferromagnetic semiconductor EuO, which is one of the best approximations to a localized ferromagnet. We argue that implanted muons are sensitive to the internal field primarily through a combination of hyperfine and Lorentz fields. The temperature dependences of the internal field and the relaxation rate have been measured and are compared with previous theoretical predictions.Comment: 4 pages, 4 figure

    Superconducting Pairing Symmetries in Anisotropic Triangular Quantum Antiferromagnets

    Full text link
    Motivated by the recent discovery of a low temperature spin liquid phase in layered organic compound κ\kappa-(ET)2_2Cu2_2(CN)3_3 which becomes a superconductor under pressure, we examine the phase transition of Mott insulating and superconducting (SC) states in a Hubbard-Heisenberg model on an anisotropic triangular lattice. We use a renormalized mean field theory to study the Gutzwiller projected BCS wavefucntions. The half filled electron system is a Mott insulator at large on-site repulsion UU, and is a superconductor at a moderate UU. The symmetry of the SC state depends on the anisotropy, and is gapful with dx2−y2+idxyd_{x^2-y^2}+id_{xy} symmetry near the isotropic limit and is gapless with dx2−y2d_{x^2-y^2} symmetry at small anisotropy ratio.Comment: 6 pages, 5 figure

    Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    Get PDF
    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI

    Thermodynamic and magnetic properties of the layered triangular magnet NaNiO2

    Full text link
    We report muon-spin rotation, heat capacity, magnetization, and ac magnetic susceptibility measurements of the layered spin-1/2 antiferromagnet NaNiO2. These show the onset of long-range magnetic order below T_N = 19.5K. Rapid muon depolarization persisting to about 5K above T_N is consistent with the presence of short-range magnetic order. The temperature and frequency dependence of the ac susceptibility suggests that magnetic clusters persist above 25K in the paramagnetic state and that their volume fraction decreases with increasing temperature. A frequency dependent peak in the ac magnetic susceptibility at T_sf = 3K is observed, consistent with a slowing of spin fluctuations at this temperature. A partial magnetic phase diagram is deduced.Comment: 4 pages, 4 figure
    • …
    corecore