77 research outputs found
Efficacy of EGFR Inhibition Is Modulated by Model, Sex, Genetic Background and Diet: Implications for Preclinical Cancer Prevention and Therapy Trials
Molecule-targeted therapies are being widely developed and deployed, but they are frequently less effective in clinical trials than predicted based upon preclinical studies. Frequently, only a single model or genetic background is utilized using diets that are not relevant to that consumed by most cancer patients, which may contribute to the lack of predictability of many preclinical therapeutic studies. Inhibition of epidermal growth factor receptor (EGFR) in colorectal cancer was used to investigate potential causes for low predictive values of many preclinical studies. The efficacy of the small molecule EGFR inhibitor AG1478 was evaluated using two mouse models, ApcMin/+ and azoxymethane (AOM), both sexes on three genetic backgrounds, C57BL/6J (B6) and A/J (A) inbred strains and AB6F1 hybrids, and two diets, standard chow (STD) or Western-style diet (WD). AG1478 has significant anti-tumor activity in the B6-ApcMin/+ model with STD but only moderately on the WD and in the AOM model on an A background with a WD but not STD. On the F1 hybrid background AG1478 is effective in the ApcMin/+ model with either STD or WD, but has only moderate efficacy in the AOM model with either diet. Sex differences were also observed. Unexpectedly, the level of liver EGFR phosphorylation inhibition by AG1478 was not positively correlated with inhibition of tumor growth in the AOM model. Model-dependent interactions between genetic background and diet can dramatically impact preclinical results, and indicate that low predictive values of preclinical studies can be attributed to study designs that do not account for the heterogeneous patient population or the diets they consume. Better-designed preclinical studies should lead to more accurate predictions of therapeutic response in the clinic
Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer
Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-Îł or various combination of RB/p105, Ras-DN, IFN-Îł, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas
Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats
<p>Abstract</p> <p>Background</p> <p>Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats.</p> <p>Methods</p> <p>For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 à 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 à 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent).</p> <p>Results</p> <p>Microarray gene expression analysis showed that <it>Defcr4</it>, <it>Igfbp5</it>, <it>Mmp7, Nos2, S100A8 </it>and <it>S100A9 </it>were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while <it>Slc26a3</it>, <it>Mptx</it>, <it>Retlna </it>and <it>Muc2 </it>were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including <it>Apc</it>.</p> <p>Conclusion</p> <p>The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to note that one of the alterations concerned <it>Apc</it>, a key gene in colorectal carcinogenesis. The fact that many of the molecular alterations described in this study are documented in human colon tumours confirms the relevance of DMH-induced cancers as a powerful tool for the study of colon carcinogenesis and chemoprevention.</p
American ginseng suppresses Western diet-promoted tumorigenesis in model of inflammation-associated colon cancer: role of EGFR
<p>Abstract</p> <p>Background</p> <p>Western diets increase colon cancer risk. Epidemiological evidence and experimental studies suggest that ginseng can inhibit colon cancer development. In this study we asked if ginseng could inhibit Western diet (20% fat) promoted colonic tumorigenesis and if compound K, a microbial metabolite of ginseng could suppress colon cancer xenograft growth.</p> <p>Methods</p> <p>Mice were initiated with azoxymethane (AOM) and, two weeks later fed a Western diet (WD, 20% fat) alone, or WD supplemented with 250-ppm ginseng. After 1 wk, mice received 2.5% dextran sulfate sodium (DSS) for 5 days and were sacrificed 12 wks after AOM. Tumors were harvested and cell proliferation measured by Ki67 staining and apoptosis by TUNEL assay. Levels of EGF-related signaling molecules and apoptosis regulators were determined by Western blotting. Anti-tumor effects of intraperitoneal compound K were examined using a tumor xenograft model and compound K absorption measured following oral ginseng gavage by UPLC-mass spectrometry. Effects of dietary ginseng on microbial diversity were measured by analysis of bacterial 16S rRNA.</p> <p>Results</p> <p>Ginseng significantly inhibited colonic inflammation and tumorigenesis and concomitantly reduced proliferation and increased apoptosis. The EGFR cascade was up-regulated in colonic tumors and ginseng significantly reduced EGFR and ErbB2 activation and Cox-2 expression. Dietary ginseng altered colonic microbial diversity, and bacterial suppression with metronidazole reduced serum compound K following ginseng gavage. Furthermore, compound K significantly inhibited tumor xenograft growth.</p> <p>Conclusions</p> <p>Ginseng inhibited colonic inflammation and tumorigenesis promoted by Western diet. We speculate that the ginseng metabolite compound K contributes to the chemopreventive effects of this agent in colonic tumorigenesis.</p
Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition
Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops
- âŠ