85 research outputs found

    Kinetochore-Independent Chromosome Poleward Movement during Anaphase of Meiosis II in Mouse Eggs

    Get PDF
    Kinetochores are considered to be the key structures that physically connect spindle microtubules to the chromosomes and play an important role in chromosome segregation during mitosis. Due to different mechanisms of spindle assembly between centrosome-containing mitotic cells and acentrosomal meiotic oocytes, it is unclear how a meiotic spindle generates the poleward forces to drive two rounds of meiotic chromosome segregation to achieve genome haploidization. We took advantage of the fact that DNA beads are able to induce bipolar spindle formation without kinetochores and studied the behavior of DNA beads in the induced spindle in mouse eggs during meiosis II. Interestingly, DNA beads underwent poleward movements that were similar in timing and speed to the meiotic chromosomes, although all the beads moved together to the same spindle pole. Disruption of dynein function abolished the poleward movements of DNA beads but not of the meiotic chromosomes, suggesting the existence of different dynein-dependent and dynein-independent force generation mechanisms for the chromosome poleward movement, and the latter may be dependent on the presence of kinetochores. Consistent with the observed DNA bead poleward movement, sperm haploid chromatin (which also induced bipolar spindle formation after injection to a metaphase egg without forming detectable kinetochore structures) also underwent similar poleward movement at anaphase as DNA beads. The results suggest that in the chromatin-induced meiotic spindles, kinetochore attachments to spindle microtubules are not absolutely required for chromatin poleward movements at anaphase

    Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV --- far-IR) and the low-z energy budget

    Get PDF
    We present the GAMA Panchromatic Data Release (PDR) constituting over 230deg2^2 of imaging with photometry in 21 bands extending from the far-UV to the far-IR. These data complement our spectroscopic campaign of over 300k galaxies, and are compiled from observations with a variety of facilities including: GALEX, SDSS, VISTA, WISE, and Herschel, with the GAMA regions currently being surveyed by VST and scheduled for observations by ASKAP. These data are processed to a common astrometric solution, from which photometry is derived for 221,373 galaxies with r<19.8 mag. Online tools are provided to access and download data cutouts, or the full mosaics of the GAMA regions in each band. We focus, in particular, on the reduction and analysis of the VISTA VIKING data, and compare to earlier datasets (i.e., 2MASS and UKIDSS) before combining the data and examining its integrity. Having derived the 21-band photometric catalogue we proceed to fit the data using the energy balance code MAGPHYS. These measurements are then used to obtain the first fully empirical measurement of the 0.1-500μ\mum energy output of the Universe. Exploring the Cosmic Spectral Energy Distribution (CSED) across three time-intervals (0.3-1.1Gyr, 1.1-1.8~Gyr and 1.8---2.4~Gyr), we find that the Universe is currently generating (1.5±0.3)×1035(1.5 \pm 0.3) \times 10^{35} h70_{70} W Mpc3^{-3}, down from (2.5±0.2)×1035(2.5 \pm 0.2) \times 10^{35} h70_{70} W Mpc3^{-3} 2.3~Gyr ago. More importantly, we identify significant and smooth evolution in the integrated photon escape fraction at all wavelengths, with the UV escape fraction increasing from 27(18)% at z=0.18 in NUV(FUV) to 34(23)% at z=0.06. The GAMA PDR will allow for detailed studies of the energy production and outputs of individual systems, sub-populations, and representative galaxy samples at z<0.5z<0.5. The GAMA PDR can be found at: http://gama-psi.icrar.org

    Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

    Get PDF
    The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low-redshift galaxies. Covering an area of ~286 deg^2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238,000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm - 1 m. Here we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component S\'ersic fits, stellar masses, Hα\alpha-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72,225 objects in total). The database serving these data is available at http://www.gama-survey.org/

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance
    corecore