22 research outputs found

    Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L

    Full text link
    [EN] Rhamnus ludovici-salvatoris, endemic to the Gymnesian Islands, coexists with the related and widespread R. alaternus in Mallorca and Menorca. In both species, the population genetic structure using RAPD, and flowering during a 3-year period to check for possible phenological barriers, were analyzed. Rhamnus ludovici-salvatoris showed lower genetic diversity and stronger population structure than R. alaternus, the Cabrera population being less diverse and the most differentiated. Rhamnus ludovici-salvatoris flowered one month later, although flowering of both species coincided sporadically. These congeners seem to have diverged through isolation by time and differentiation in habitat. The population genetic structure of R. ludovici-salvatoris could mainly be due to the existence of small populations on the one hand, and a gene flow caused by rare hybridization events on the other, which may also explain the presence of morphologically intermediate individuals in Menorca. The conservation of R. ludovici-salvatoris populations may include population reinforcements and other in situ interventions.Ferriol Molina, M.; Llorens GarcĂ­a, L.; Gil, L.; Boira Tortajada, H. (2009). Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L. Plant Systematics and Evolution. 277(1-2):105-116. doi:10.1007/s00606-008-0110-3S1051162771-2Affre L, Thompson JD, Debussche M (1997) Genetic structure of continental and island populations of the Mediterranean endemic Cyclamen balearicum (Primulaceae). Amer J Bot 84(4): 437–451BOIB (2005) Decreto 75/2005. BOIB 106: 29–32Bolmgren K, Oxelman B (2004) Generic limits in Rhamnus L. s.l. (Rhamnaceae) inferred from nuclear and chloroplast DNA sequence phylogenies. Taxon 53(2):383–390BolĂČs O, Molinier R (1958) Recherches phytosociologiques dans l’üle de Majorque. Collectanea Botanica 34:699–865Cardona MA (1979) Consideracions sobre l’endemisme i l’origen de la flora de las Illes Balears. ButlletĂ­ del Institut CatalĂĄ de Historia Natural 44 (Sec. Bot. 3):7–15Cardona MA, Contandriopoulos J (1979) Endemism and evolution in the islands of the Western Mediterranean. In: Bramwell D (ed) Plants and islands. Academic Press, London, pp 133–169Chodat L (1924) Contributions Ă  la GĂ©o-Botanique de Majorque. PhD Thesis, UniversitĂ© de GenĂšve—Institut de Botanique, SwitzerlandCollins D, Mill RR, Moller M (2003) Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Amer J Bot 90(2):175–182Cronk QCB (1997) Islands: stability, diversity, conservation. Biodivers Conserv 6(3):477–493Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Ducarme V, Wesselingh RA (2005) Detecting hybridization in mixed populations of Rhinanthus minor and Rhinanthus angustifolius. Folia Geobot 40(2/3):151–161Englishloeb GM, Karban R (1992) Consequences of variation in flowering phenology for seed head herbivory and reproductive success in Erigeron glaucus (Compositae). Oecologia 89:588–595Gautier F, Caluzon G, Suk JP, Violanti D (1994) Age et durĂ©e de la crise de salinitĂ© Messinienne. Comptes Rendus de l’AcadĂ©mie des Sciences de Paris 318:1103–1109Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Molec Ecol 15:3655–3667Gil L, Llorens L, TĂ©bar FJ, Costa M (1995) La vegetaciĂłn de la isla de Cabrera. In: GuĂ­a de la excursiĂłn geobotĂĄnica de las XV Jornadas de FitosociologĂ­a. Datos sobre la vegetaciĂłn de Cabrera. Palma de Mallorca: Universitat de les Illes Balears, pp 51–77GulĂ­as J, Flexas J, AbadĂ­a A, Medrano H (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, and endemic Balearic species. Tree Physiol 22:687–697GulĂ­as J, Traveset A, Riera N, Mus M (2004) Critical stages in the recruitment process of Rhamnus alaternus L. Ann Bot 93:723–731Gustafsson S, Sjögren-Gulve P (2002) Genetic diversity in the rare orchid, Gymnadenia odoratissima and a comparison with the more common congener, G. conopsea. Conserv Genet 3:225–234Gustafsson S (2003) Population genetic analyses in the orchid genus Gymnadenia—a conservation genetic perspective. PhD Thesis, Uppsala University, SwedenGustafsson S, Lönn M (2003) Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Heredity 91:284–292Harris W (1996) Genecological aspects of flowering patterns of populations of Kunzea ericoides and K. sinclairii (Myrtaceae). New Zealand J Bot 34:333–354Hendry AP, Dray T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Molec Ecol 14:901–916Hosokawa K, Minami M, Kawahara K, Nakamura I, Shibata T (2000) Discrimination among three species of medicinal Scutellaria plants using RAPD markers. Pl Med 66:270–272Huang Z, Liu L, Zhou T, Ju B (2005) Effects of environmental factors on the population genetic structure in chukar partridge (Alectoris chukar). J Arid Environ 62:427–434Juan A, Crespo MB, Cowan RS, Lexer C, Fay F (2004) Patterns of variability and gene flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molec Ecol 13:2679–2690Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655Lamont BB, He T, Enright NJ, Krauss SL, Miller BP (2003) Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 16:551–557Lennartsson T (1997) Seasonal differentiation—a conservative reproductive barrier in two grassland Gentianella (Gentianaceae) species. Pl Syst Evol 208:45–69Martinez-Solis I, Iranzo J, Estrelles E, Ibars AM (1993) Leaf domatia in the section Alaternus (Miller) DC. of the genus Rhamnus (Rhamnaceae). Bot J Linn Soc 112:311–318McIntosh ME (2002) Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Pl Ecol 159:1–13Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323Nei M (1978) Estimation of average heterozigosity and genetic distance from a small number of individuals. Genetics 89:583–590Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 79:5269–5273Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Pl Ecol Evol Syst 3(2):93–114Oostermeijer JGB, Luijten SH, Ellis-Adam AC, den Nijs JCM (2002) Future prospects for the rare, late-flowering Gentianella germanica and Gentianopsis ciliata in Dutch nutrient-poor calcareous grasslands. Biol Conserv 104:339–350Pease CM, Lande R, Bull JJ (1989) A model of population growth, dispersal and evolution in a changing environment. Ecology 70(6):1657–1664Perron M, Gordon AG, Bousquet J (1995) Species-specific RAPD fingerprints for the closely related Picea mariana and P. rubens. Theor Appl Genet 91:142–149Pierce S, Ceriani RM, Villa M, Cerabolini B (2006) Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European prealps. Conserv Biol 20(6):1804–1810Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Amer J Bot 87(9):1309–1324RosellĂł JA, SĂĄez L (2000) Index Balearicum: an annotated check-list of the vascular plants described from the Balearic Islands. Collect Bot 25(1):3–203RosellĂł JA, CebriĂĄn MC, Mayol M (2002) Testing taxonomic and biogeographical relationships in a narrow mediterranean endemic complex (Hippocrepis balearica) using RAPD markers. Ann Bot 89:321–327Sales E, Nebauer SG, Mus M, Segura J (2001) Population genetic study in the Balearic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Amer J Bot 88(10):1750–1759Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 9–34Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman and Co., San FranciscoTraveset A, GulĂ­as J, Riera N, Mus M (2003) Transition probabilities from pollination to establishment in a rare dioecious shrub species (Rhamnus ludovici-salvatoris) in two habitats. J Ecol 91:427–437Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) (2001) Flora Europaea, vol 2. Rosaceae to Umbelliferae. Cambridge University Press, CambridgeWright S (1931) Evolution in Mendelian populations. Genetics 16:97–159Zimmerman M (1980a) Reproduction in Polemonium: pre-dispersal seed predation. Ecology 61:502–506Zimmerman M (1980b) Reproduction in Polemonium: competition for pollinators. Ecology 61:497–50

    Mutation D816V Alters the Internal Structure and Dynamics of c-KIT Receptor Cytoplasmic Region: Implications for Dimerization and Activation Mechanisms

    Get PDF
    The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites

    Introduction to Lignocellulose-based Products

    No full text
    corecore