63 research outputs found

    Inhaled nitric oxide alleviates hyperoxia suppressed phosphatidylcholine synthesis in endotoxin-induced injury in mature rat lungs

    Get PDF
    BACKGROUND: We investigated efficacy of inhaled nitric oxide (NO) in modulation of metabolism of phosphatidylcholine (PC) of pulmonary surfactant and in anti-inflammatory mechanism of mature lungs with inflammatory injury. METHODS: Healthy adult rats were divided into a group of lung inflammation induced by i.v. lipopolysaccharides (LPS) or a normal control (C) for 24 h, and then exposed to: room air (Air), 95% oxygen (O), NO (20 parts per million, NO), both O and NO (ONO) as subgroups, whereas [(3)H]-choline was injected i.v. for incorporation into PC of the lungs which were processed subsequently at 10 min, 4, 8, 12 and 24 h, respectively, for measurement of PC synthesis and proinflammatory cytokine production. RESULTS: LPS-NO subgroup had the lowest level of labeled PC in total phospholipids and disaturated PC in bronchoalveolar lavage fluid and lung tissue (decreased by 46–59%), along with the lowest activity of cytidine triphosphate: phosphocholine cytidylyltransferase (-14–18%) in the lungs, compared to all other subgroups at 4 h (p < 0.01), but not at 8 and 12 h. After 24-h, all LPS-subgroups had lower labeled PC than the corresponding C-subgroups (p < 0.05). LPS-ONO had higher labeled PC in total phospholipids and disaturated PC, activity of cytidylyltransferase, and lower activity of nuclear transcription factor-κB and expression of proinflammatory cytokine mRNA, than that in the LPS-O subgroup (p < 0.05). CONCLUSION: In LPS-induced lung inflammation in association with hyperoxia, depressed PC synthesis and enhanced proinflammatory cytokine production may be alleviated by iNO. NO alone only transiently suppressed the PC synthesis as a result of lower activity of cytidylyltransferase

    Raman Spectroscopy and Regenerative Medicine: A Review

    Get PDF
    The field of regenerative medicine spans a wide area of the biomedical landscape—from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool

    The role of leadership in salespeople’s price negotiation behavior

    Get PDF
    Salespeople assume a key role in defending firms’ price levels in price negotiations with customers. The degree to which salespeople defend prices should critically depend upon their leaders’ influence. However, the influence of leadership on salespeople’s price defense behavior is barely understood, conceptually or empirically. Therefore, building on social learning theory, the authors propose that salespeople might adopt their leaders’ price defense behavior given a transformational leadership style. Furthermore, drawing on the contingency leadership perspective, the authors argue that this adoption fundamentally depends on three variables deduced from the motivation–ability–opportunity (MAO) framework, that is, salespeople’s learning motivation, negotiation efficacy, and perceived customer lenience. Results of a multi-level model using data from 92 salespeople and 264 salesperson–customer interactions confirm these predictions. The first to explore contingencies of salespeople’s adoption of their transformational leaders’ price negotiation behaviors, this study extends marketing theory and provides actionable guidance to practitioners

    Perfluorocarbon emulsions prevent hypoxia of pancreatic β-cells.

    No full text
    As oxygen carriers, perfluorocarbon emulsions might be useful to decrease hypoxia of pancreatic islets before transplantation. However, their hydrophobicity prevents their homogenisation in culture medium. To increase the surface of contact between islets and Perfluorooctyl bromide (PFOB), and consequently oxygen delivery, we tested effect of a PFOB emulsion in culture medium on β-cell lines and rat pancreatic islets. RINm5F β-cell line or pancreatic rat islets were incubated for 3 days in the presence of PFOB emulsion in media (3.5% w/v). Preoxygenation of the medium was performed before culture. Cell viability was assessed by apoptotic markers (Bax and Bcl-2) and by staining (fluoresceine diacetate and propidium iodide). β-Cell functionality was determined by insulin release during a glucose stimulation test and. Hypoxia markers, HIF-1α and VEGF, were studied at days 1 and 3 using RT-PCR, Western blotting, and ELISA. PFOB emulsions preserved viability and functionality of RINm5F cells with a decrease of HIF-1α and VEGF expression. Islets viability was preserved during 3 days of culture. Secretion of VEGF was higher in untreated control (0.09 ± 0.041 μg VEGF/mg total protein) than in PFOB emulsion incubated islets (0.02 ± 0.19 μg VEGF/mg total protein, n = 4, p &lt; 0.05) at day 1. At day 3, VEGF secretion was increased as compared to day 1 in control (0.23 ± 0.04 μg VEGF/mg total protein) but it was imbalance by the presence of PFOB emulsion (0.09 ± 0.03 μg VEGF/mg total protein, n = 5, p &lt; 0.05). While insulin secretion was maintained in response to a glucose stimulation test until day 3 when islets were incubated in the presence of PFOB emulsion preoxygenated (0.81 ± 0.16 at day 1 vs. 0.75 ± 0.24 at day 3), the ability to secrete insulin in the presence of high glucose concentration was lost in islets controls (0.51 ± 0.18 at day 1 vs. 0.21 ± 0.13 at day 3). Atmospheric oxygen delivery by PFOB emulsion might be sufficient to decrease islets hypoxia. However, to improve islets functionality, overoxygenation is needed. Finally, maintenance of islet viability and functionality for several days after isolation could improve the outcome of islets transplantation
    • …
    corecore