3,333 research outputs found

    Three-Dimensional Manganese Oxide@Carbon Networks as Free-Standing, High-Loading Cathodes for High-Performance Zinc-Ion Batteries

    Get PDF
    Zinc-ion batteries (ZIBs), which are inexpensive and environmentally friendly, have a lot of potential for use in grid-scale energy storage systems, but their use is constrained by the availability of suitable cathode materials. MnO2-based cathodes are emerging as a promising contenders, due to the great availability and safety, as well as the device's stable output voltage platform (1.5 V). Improving the slow kinetics of MnO2-based cathodes caused by low electrical conductivity and mass diffusion rate is a challenge for their future use in next-generation rapid charging devices. Herein, the aforementioned challenges are overcome by proposing a sodium-intercalated manganese oxide (NMO) with 3D varying thinness carbon nanotubes (VTCNTs) networks as appropriate free-standing, binder-free cathodes (NMO/VTCNTs) without any heat treatment. A network construction strategy based on CNTs of different diameters is proposed for the first time to provide high specific capacity while achieving high mass loading. The specific capacity of as-prepared cathodes is significantly increased. The resulting free-standing binder-free cathodes achieve excellent capacity (329 mAh g−1 after 120 cycles at 0.2 A g−1 and 225 mAh g−1 after 200 cycles at 1 A g−1) and long-term cycling stability (158 mAh g−1 at 2 A g−1 after 1000 cycles)

    Three-Dimensional Manganese Oxide@Carbon Networks as Free-Standing, High-Loading Cathodes for High-Performance Zinc-Ion Batteries

    Get PDF
    Zinc-ion batteries (ZIBs), which are inexpensive and environmentally friendly, have a lot of potential for use in grid-scale energy storage systems, but their use is constrained by the availability of suitable cathode materials. MnO2-based cathodes are emerging as a promising contenders, due to the great availability and safety, as well as the device's stable output voltage platform (1.5 V). Improving the slow kinetics of MnO2-based cathodes caused by low electrical conductivity and mass diffusion rate is a challenge for their future use in next-generation rapid charging devices. Herein, the aforementioned challenges are overcome by proposing a sodium-intercalated manganese oxide (NMO) with 3D varying thinness carbon nanotubes (VTCNTs) networks as appropriate free-standing, binder-free cathodes (NMO/VTCNTs) without any heat treatment. A network construction strategy based on CNTs of different diameters is proposed for the first time to provide high specific capacity while achieving high mass loading. The specific capacity of as-prepared cathodes is significantly increased. The resulting free-standing binder-free cathodes achieve excellent capacity (329 mAh g−1 after 120 cycles at 0.2 A g−1 and 225 mAh g−1 after 200 cycles at 1 A g−1) and long-term cycling stability (158 mAh g−1 at 2 A g−1 after 1000 cycles)

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Periodontal disease and atherosclerosis from the viewpoint of the relationship between community periodontal index of treatment needs and brachial-ankle pulse wave velocity

    Get PDF
    BACKGROUND: It has been suggested that periodontal disease may be an independent risk factor for the development of atherosclerosis. However, the relationship between periodontal disease and atherosclerosis has not been fully elucidated. This study aimed to assess the effects of periodontal disease on atherosclerosis. METHODS: The study design was a cross-sectional study. Subjects were 291 healthy male workers in Japan. We used the Community Periodontal Index of Treatment Needs (CPITN) score, average probing depth and gingival bleeding index (rate of bleeding gums) to assess the severity of periodontal disease. We also used the Brachial-Ankle Pulse Wave Velocity (baPWV) as the index for the development of atherosclerosis. RESULTS: The unadjusted odds ratio (OR) of atherosclerosis in relation to the CPITN score was 1.41 [95% CI: 1.16–1.73]. However, after adjustment for age, systolic blood pressure and smoking, the CPITN score had no relationship with atherosclerosis (adjusted OR: 0.91 [0.68–1.20]). CONCLUSION: Our results show no relationship between mild periodontal disease and atherosclerosis after appropriate adjustments

    Terahertz underdamped vibrational motion governs protein-ligand binding in solution

    Get PDF
    Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function

    Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM

    Full text link
    We examine the implications of singlet-doublet Higgs mixing on the properties of a Standard Model (SM)-like Higgs boson within the Peccei-Quinn invariant extension of the NMSSM (PQ-NMSSM). The SM singlet added to the Higgs sector connects the PQ and visible sectors through a PQ-invariant non-renormalizable K\"ahler potential term, making the model free from the tadpole and domain-wall problems. For the case that the lightest Higgs boson is dominated by the singlet scalar, the Higgs mixing increases the mass of a SM-like Higgs boson while reducing its signal rate at collider experiments compared to the SM case. The Higgs mixing is important also in the region of parameter space where the NMSSM contribution to the Higgs mass is small, but its size is limited by the experimental constraints on the singlet-like Higgs boson and on the lightest neutralino constituted mainly by the singlino whose Majorana mass term is forbidden by the PQ symmetry. Nonetheless the Higgs mixing can increase the SM-like Higgs boson mass by a few GeV or more even when the Higgs signal rate is close to the SM prediction, and thus may be crucial for achieving a 125 GeV Higgs mass, as hinted by the recent ATLAS and CMS data. Such an effect can reduce the role of stop mixing.Comment: 26 pages, 3 figures; published in JHE

    Complications of Evans' syndrome in an infant with hereditary spherocytosis: a case report

    Get PDF
    Hereditary spherocytosis (HS) is a genetic disorder of the red blood cell membrane clinically characterized by anemia, jaundice and splenomegaly. Evans' syndrome is a clinical syndrome characterized by autoimmune hemolytic anemia (AIHA) accompanied by immune thrombocytopenic purpura (ITP). It results from a malfunction of the immune system that produces multiple autoantibodies targeting at least red blood cells and platelets. HS and Evans' syndrome have different mechanisms of pathophysiology one another. We reported the quite rare case of an infant who had these diseases concurrently. Possible explanations of the unexpected complication are discussed

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Polymorphisms of toll-like receptors 2 and 9 and severity and prognosis of bacterial meningitis in Chinese children

    Get PDF
    Toll-like receptors (TLRs) play a crucial role in innate immunity, protecting the host from bacterial pathogens. We investigated whether bacterial meningitis (BM) in children was associated with gene polymorphisms in TLR2 (rs3804099), TLR3 (rs3775291 and rs3775290) and TLR9 (rs352139 and rs352140). Blood samples were taken from 218 child patients with confirmed BM and 330 healthy adult controls (HC) and polymorphisms of these genes were analyzed by PCR-based sequencing. For TLR2 rs3804099, frequencies of the minor allele C were markedly higher in patients with severe BM (defined as CSF glucose concentration <= 1.5 mmol/L and seizures) than those without (43.5% and 40.1% vs. 30.1% and 29.1%, p = 0.008 and p = 0.016, respectively). For TLR9 rs352139, patients who carried genotype AA and minor allele A developed seizures less often than those without (OR = 0.289, p = 0.003 and OR = 0.568, p = 0.004, respectively). However, for TLR9 rs352140, patients who carried genotype TT and minor allele T developed seizures more often than those without (OR = 3.385, p = 0.004 and OR = 1.767, p = 0.004, respectively). Our finding suggested that genetic variations in TLR2 and TLR9 are associated with severity and prognosis of bacterial meningitis in Chinese children. However, the results should be interpreted with caution since the number of subjects included was limited
    corecore