23 research outputs found

    Assessment and attribution of mangrove forest changes in the indian sundarbans from 2000 to 2020

    Get PDF
    The Indian Sundarbans, together with Bangladesh, comprise the largest mangrove forest in the world. Reclamation of the mangroves in this region ceased in the 1930s. However, they are still subject to adverse environmental influences, such as sediment starvation due to migration of the main river channels in the Ganges–Brahmaputra delta over the last few centuries, cyclone landfall, wave action from the Bay of Bengal—changing hydrology due to upstream water diversion—and the pervasive effects of relative sea-level rise. This study builds on earlier work to assess changes from 2000 to 2020 in mangrove extent, genus composition, and mangrove ‘health’ indicators, using various vegetation indices derived from Landsat and MODIS satellite imagery by performing maximum likelihood supervised classification. We show that about 110 km2 of mangroves disappeared within the reserve forest due to erosion, and 81 km2 were gained within the inhabited part of Sundarbans Biosphere Reserve (SBR) through plantation and regeneration. The gains are all outside the contiguous mangroves. However, they partially compensate for the losses of the contiguous mangroves in terms of carbon. Genus composition, analyzed by amalgamating data from published literature and ground-truthing surveys, shows change towards more salt-tolerant genus accompanied by a reduction in the prevalence of freshwater-loving Heiritiera, Nypa, and Sonneratia assemblages. Health indicators, such as the enhanced vegetation index (EVI) and normalized differential vegetation index (NDVI), show a monotonic trend of deterioration over the last two decades, which is more pronounced in the sea-facing parts of the mangrove forests. An increase in salinity, a temperature rise, and rainfall reduction in the pre-monsoon and the post-monsoon periods appear to have led to such degradation. Collectively, these results show a decline in mangrove area and health, which poses an existential threat to the Indian Sundarbans in the long term, especially under scenarios of climate change and sea-level rise. Given its unique values, the policy process should acknowledge and address these threats

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    Desert dust and monsoon rain

    No full text

    Temporal feedback control of high-intensity laser pulses to optimize ultrafast heating of atomic clusters

    No full text
    We describe how active feedback routines can be applied at limited repetition rate (5 Hz) to optimize high- power ( P> 10 TW) laser interactions with clustered gases. Optimization of x-ray production from an argon cluster jet, using a genetic algorithm, approximately doubled the measured energy through temporal modification of the 150 mJ driving laser pulse. This approach achieved an increased radiation yield through exploration of a multi-dimensional parameter space, without requiring detailed apriori knowledge of the complex cluster dynamics. The optimized laser pulses exhibited a slow rising edge to the intensity profile, which enhanced the laser energy coupling into the cluster medium, compared to the optimally compressed FWHM pulse (40 fs). Our work suggests that this technique can be more widely utilized for control of intense pulsed secondary radiation from petawatt-class laser systems

    Laser wakefield acceleration with active feedback at 5 Hz

    No full text
    The data and code used to produce the plots in Dann et al., "Laser wakefield acceleration with active feedback at 5 Hz", Phys. Rev. Accel. Beams (2019). This is a sub-set of the data collected during an experiment investigating the use of active feedback in laser wakefield acceleration driven by a 5 Hz, 20 TW laser. The complete data set weighed in at over 800 GB, so this only includes the data used in the above-mentioned publication.The data and code used to produce the plots in Dann et al., "Laser wakefield acceleration with active feedback at 5 Hz", Phys. Rev. Accel. Beams (2019). This is a sub-set of the data collected during an experiment investigating the use of active feedback in laser wakefield acceleration driven by a 5 Hz, 20 TW laser. The complete data set weighed in at over 800 GB, so this only includes the data used in the above-mentioned publication

    Laser wakefield acceleration with active feedback at 5 Hz

    No full text
    We describe the use of a genetic algorithm to apply active feedback to a laser wakefield accelerator at a higher power (10 TW) and a lower repetition rate (5 Hz) than previous work. The temporal shape of the drive laser pulse was adjusted automatically to optimize the properties of the electron beam. By changing the software configuration, different properties could be improved. This included the total accelerated charge per bunch, which was doubled, and the average electron energy, which was increased from 22 to 27 MeV. Using experimental measurements directly to provide feedback allows the system to work even when the underlying acceleration mechanisms are not fully understood, and, in fact, studying the optimized pulse shape might reveal new insights into the physical processes responsible. Our work suggests that this technique, which has already been applied with low-power lasers, can be extended to work with petawatt-class laser systems

    The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20

    No full text
    Peroxisomal matrix protein import uses two peroxisomal targeting signals (PTSs). Most matrix proteins use the PTS1 pathway and its cargo receptor, Pex5. The PTS2 pathway is dependent on another receptor, Pex7, and its coreceptor, Pex20. We found that during the matrix protein import cycle, the stability and dynamics of Pex7 differ from those of Pex5 and Pex20. In Pichia pastoris, unlike Pex5 and Pex20, Pex7 is constitutively degraded in wild-type cells but is stabilized in pex mutants affecting matrix protein import. Degradation of Pex7 is more prevalent in cells grown in methanol, in which the PTS2 pathway is nonessential, in comparison with oleate, suggesting regulation of Pex7 turnover. Pex7 must shuttle into and out of peroxisomes before it is polyubiquitinated and degraded by the proteasome. The shuttling of Pex7, and consequently its degradation, is dependent on the receptor recycling pathways of Pex5 and Pex20 and relies on an interaction between Pex7 and Pex20. We also found that blocking the export of Pex20 from peroxisomes inhibits PTS1-mediated import, suggesting sharing of limited components in the export of PTS receptors/coreceptors. The shuttling and stability of Pex7 are divergent from those of Pex5 and Pex20, exemplifying a novel interdependence of the PTS1 and PTS2 pathways
    corecore