18 research outputs found

    Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses

    No full text
    During a two year population ecology study in a cave environment, 15 Eurycea (=Typhlotriton) spelaea were observed ingesting bat guano. Furthermore, E. spelaea capture numbers increased significantly during the time that grey bats (Myotis grisescens) deposited fresh guano. We investigated the hypothesis that this behaviour was not incidental to the capture of invertebrate prey, but a diet switch to an energy-rich detritus in an oligotrophic environment. Stable isotope assays determined that guano may be assimilated into salamander muscle tissue, and nutritional analyses revealed that guano is a comparable food source to potential invertebrate prey items. This is the first report of coprophagy in a salamander and in any amphibian for reasons other than intestinal inoculation. Because many temperate subterranean environments are often energy poor and this limitation is thought to select for increased diet breadth, we predict that coprophagy may be common in subterranean vertebrates where it is not currently recognized

    Organization of vertebrate annual cycles: implications for control mechanisms

    No full text
    The majority of vertebrates have a life span of greater than one year. Therefore individuals must be able to adapt to the annual cycle of changing conditions by adjusting morphology, physiology and behaviour. Phenotypic flexibility, in which an individual switches from one life history stage to another, is one way to maximize fitness in a changing environment. When environmental variation is low, few life history stages are needed. If environmental variation is large, there are more life history stages. Each life history stage has a characteristic set of sub-stages that can be expressed in various combinations and patterns to determine state at any point in the life of the individual. Thus individuals have a finite number of states that can be expressed over the spectrum of environmental conditions in their life spans. Life history stages have three phases–development, mature capability (when characteristic sub-stages can be expressed) and termination. Expression of a stage is time dependent (probably a minimum of one month), and termination of one stage overlaps development of the next stage. It follows that the more life history stages an individual expresses, the less flexibility it will have in timing those stages. Having fewer life history stages increases flexibility in timing, but less tolerance of variation in environmental conditions. To varying degrees it is possible to overlap mature capability of some life history stages to effectively reduce ‘finite stage diversity’ and maximize flexibility in timing. Theoretical ways by which this can be done, and the implications for neuroendocrine and endocrine control mechanisms are discussed. Twelve testable hypotheses are posed that relate directly to control mechanisms
    corecore