12,258 research outputs found

    Femtosecond probing of bimolecular reactions: The collision complex

    Get PDF
    Progress has been made in probing the femtosecond dynamics of transition states of chemical reactions.(1) The "half-collision" case of unimolecular reactions has been experimentally investigated for a number of systems and much theoretical work has already been developed.(2) For bimolecular reactions, the case of full collision, the zero of time is a problem which makes the femtosecond temporal resolution of the dynamics a difficult task

    Magnetorotational-type instability in Couette-Taylor flow of a viscoelastic polymer liquid

    Full text link
    We describe an instability of viscoelastic Couette-Taylor flow that is directly analogous to the magnetorotational instability (MRI) in astrophysical magnetohydrodynamics, with polymer molecules playing the role of magnetic field lines. By determining the conditions required for the onset of instability and the properties of the preferred modes, we distinguish it from the centrifugal and elastic instabilities studied previously. Experimental demonstration and investigation should be much easier for the viscoelastic instability than for the MRI in a liquid metal. The analogy holds with the case of a predominantly toroidal magnetic field such as is expected in an accretion disk and it may be possible to access a turbulent regime in which many modes are unstable.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Femtosecond real-time probing of reactions. VIII. The bimolecular reaction Br+I2

    Get PDF
    In this paper, we discuss the experimental technique for real-time measurement of the lifetimes of the collision complex of bimolecular reactions. An application to the atom–molecule Br+I_2 reaction at two collision energies is made. Building on our earlier Communication [J. Chem. Phys. 95, 7763 (1991)], we report on the observed transients and lifetimes for the collision complex, the nature of the transition state, and the dynamics near threshold. Classical trajectory calculations provide a framework for deriving the global nature of the reactive potential energy surface, and for discussing the real-time, scattering, and asymptotic (product-state distribution) aspects of the dynamics. These experimental and theoretical results are compared with the extensive array of kinetic, crossed beam, and theoretical studies found in the literature for halogen radical–halogen molecule exchange reactions

    An analysis of factors which influence the effectiveness of the morning report.

    Full text link
    Thesis (M.S.)--Boston University Includes 10 tables, 1 figure

    An analysis of factors which influence the effectiveness of the morning report.

    Full text link
    Thesis (M.S.)--Boston University Includes 10 tables, 1 figure

    Testing Theoretical Evolutionary Models with AB Dor C and the Initial Mass Function

    Full text link
    We assess the constraints on the evolutionary models of young low-mass objects that are provided by the measurements of the companion AB Dor C by Close and coworkers and by a new comparison of model-derived IMFs of star-forming regions to the well-calibrated IMF of the solar neighborhood. After performing an independent analysis of Close's imaging and spectroscopic data for AB Dor C, we find that AB Dor C is not detected at a significant level (SN 1.2) in the SDI images when one narrow-band image is subtracted from another, but that it does appear in the individual SDI frames as well as the images at JHK. Using the age of 75-150 Myr for AB Dor from Luhman, Stauffer, & Mamajek, the luminosity predicted by the models of Chabrier & Baraffe is consistent with the value that we estimate. We measure a spectral type of M6+/-1 from the K-band spectrum of AB Dor C, which is earlier than the value of M8+/-1 from Close and is consistent with the model predictions when a dwarf temperature scale is adopted. In a test of these models at much younger ages, we show that the low-mass IMFs that they produce for star-forming regions are similar to the IMF of the solar neighborhood. If the masses of the low-mass stars and brown dwarfs in these IMFs of star-forming regions were underestimated by a factor of two as suggested by Close, then the IMF characterizing the current generation of Galactic star formation would have to be radically different from the IMF of the solar neighborhood.Comment: 15 pages, accepted to the Astrophysical Journa

    Superfluidity and dimerization in a multilayered system of fermionic polar molecules

    Get PDF
    We consider a layered system of fermionic molecules with permanent dipole moments aligned by an external field. The dipole interactions between fermions in adjacent layers are attractive and induce inter-layer pairing. Due to competition for pairing among adjacent layers, the mean-field ground state of the layered system is a dimerized superfluid, with pairing only between every-other layer. We construct an effective Ising-XY lattice model that describes the interplay between dimerization and superfluid phase fluctuations. In addition to the dimerized superfluid ground state, and high temperature normal state, at intermediate temperature, we find an unusual dimerized "pseudogap" state with only short-range phase coherence. We propose light scattering experiments to detect dimerization.Comment: 4 pages main text + 3 pages supplemental Appendices, 4 figure

    Measuring Fundamental Parameters of Substellar Objects. II: Masses and Radii

    Full text link
    We present mass and radius derivations for a sample of very young, mid- to late M, low-mass stellar and substellar objects in Upper Sco and Taurus. In a previous paper, we determined effective temperatures and surface gravities for these targets, from an analysis of their high-resolution optical spectra and comparisons to the latest synthetic spectra. We now derive extinctions, radii, masses and luminosities by combining our previous results with observed photometry, surface fluxes from the synthetic spectra and the known cluster distances. These are the first mass and radius estimates for young, very low mass bodies that are independent of theoretical evolutionary models (though our estimates do depend on spectral modeling). We find that for most of our sample, our derived mass-radius and mass-luminosity relationships are in very good agreement with the theoretical predictions. However, our results diverge from the evolutionary model values for the coolest, lowest-mass targets: our inferred radii and luminosities are significantly larger than predicted for these objects at the likely cluster ages, causing them to appear much younger than expected. We suggest that uncertainties in the evolutionary models - e.g., in the choice of initial conditions and/or treatment of interior convection - may be responsible for this discrepancy. Finally, two of our late-M objects (USco 128 and 130) appear to have masses close to the deuterium-fusion boundary (9--14 Jupiters, within a factor of 2). This conclusion is primarily a consequence of their considerable faintness compared to other targets with similar extinction, spectral type and temperature (difference of 1 mag). Our result suggests that the faintest young late-M or cooler objects may be significantly lower in mass than the current theoretical tracks indicate.Comment: 54 pages, incl. 5 figs, accepted Ap
    • …
    corecore