2,069 research outputs found

    Chaotic Explosions

    Full text link
    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.Comment: 7 pages, 5 figure

    Two-dimensional Ising model on random lattices with constant coordination number

    Full text link
    We study the two-dimensional Ising model on a network with a novel type of quenched topological (connectivity) disorder. We construct random lattices of constant coordination number and perform large scale Monte Carlo simulations in order to obtain critical exponents using finite-size scaling relations. We find disorder-dependent effective critical exponents, similar to diluted models, showing thus no clear universal behavior. Considering the very recent results for the two-dimensional Ising model on proximity graphs and the coordination number correlation analysis suggested by Barghathi and Vojta (2014), our results indicate that the planarity and connectedness of the lattice play an important role on deciding whether the phase transition is stable against quenched topological disorder.Comment: LaTeX, 20 pages, 12 figure

    Genome-scale metabolic network of the central carbon metabolism of Enterococcus faecalis

    Get PDF
    The profound advance in experimental high throughput techniques (generally referred to as omics techniques) has enabled the analysis of a large number of components within a living cell. The vast amount of data obtained from the different omics (genomics, proteomics, fluxomics, metabolomics, transcriptomics) demands the use of bioinformatics tools. These methods comprise the development of comparative tools and maintenance of databases for the analysis of genomics data, in addition to the construction of models for the analysis and integration of data in a system-wide approach. Enterococcus faecalis is a gram-positive bacterium that is getting more attention due to its two-face behavior. This natural inhabitant of the mammalian gastrointestinal tract is also an opportunist pathogen responsible for urinary tract infections, nosocomial infections, bacteremia and infective endocarditis. Besides, its intrinsic physiological properties such as inherent antibiotic resistance and exceptional ability to adapt to harsh conditions provide this organism with an enormous advantage in the infection processes. Here, we propose to reconstruct the genome scale metabolic network of the central carbon metabolism of Enterococcus faecalis using genome sequencing information available on different databases as well as proteomics and metabolomics data. The first metabolic model generated for this bacterium will allow correlating metabolite levels and fluxes which enables identification of key control points in its metabolism. As it has been previously shown for other organisms, the metabolic network reconstruction may serve as a valuable tool to predict the phenotypic behaviour under various genetic and environmental conditions.Supported by a PhD grant from the FCT (Portuguese Science Foundation): SFRH/BD/47016/2008 and funding from HRC (Health Research Council of New Zealand)

    Pastagens em sistemas silvipastoris.

    Get PDF
    bitstream/item/78735/1/am.pd

    Determination of transition frequencies in a single 138^{138}Ba+^{+} ion

    Get PDF
    Transition frequencies between low-lying energy levels in a single trapped 138^{138}Ba+^{+} ion have been measured with laser spectroscopy referenced to an optical frequency comb. By extracting the frequencies of one-photon and two-photon components of the line shape using an eight-level optical Bloch model, we achieved 0.1 MHz accuracy for the 5d 2^{2}D3/2_{3/2} - 6p 2^{2}P1/2_{1/2} and 6s 2^{2}S1/2_{1/2} - 5d 2^{2}D3/2_{3/2} transition frequencies, and 0.2 MHz for the 6s 2^{2}S1/2_{1/2} - 6p 2^{2}P1/2_{1/2} transition frequency.Comment: 5 pages, 7 figures, submitted to Phys. Rev.

    First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei

    Full text link
    A new test of Lorentz invariance in the weak interactions has been made by searching for variations in the decay rate of spin-polarized 20Na nuclei. This test is unique to Gamow-Teller transitions, as was shown in the framework of a recently developed theory that assumes a Lorentz symmetry breaking background field of tensor nature. The nuclear spins were polarized in the up and down direction, putting a limit on the amplitude of sidereal variations of the form |(\Gamma_{up} - \Gamma_{down})| / (\Gamma_{up} + \Gamma_{down}) < 3 * 10^{-3}. This measurement shows a possible route toward a more detailed testing of Lorentz symmetry in weak interactions.Comment: 11 pages, 6 figure

    Sporotrichosis caused by sporothrix mexicana, Portugal

    Get PDF
    Sporotrichosis is a subcutaneous fungal infection present worldwide that is caused by traumatic inoculation or inhalation of spores of the dimorphic fungus Sporothrix schenckii complex (1-3). However, molecular studies have shown that the S. schenckii complex constitutes several cryptic infectious species (i.e., S. albicans, S. brasiliensis, S. globosa, S. luriei, S. mexicana, and S. schenckii). Marimon et al. (4) demonstrated 3 major clades grouped into 6 putative phylogenetic species. The natural habitats of these species are soil and plants. The species showed distinct pathologic behavior, antifungal responses, and phenotypes, which suggests that optimal clinical treatment may depend on the taxon involved in the sporotrichosis (1). Human infections have been reported primarily from the Americas, including Latin America (3,5). Asia (e.g., Malaysia, India, Japan), Africa, and Australia are also regions where infections are endemic (6). Although infections are rare in Europe, a case of human infection (7) and a case of an animal infection (8) have been described in southern Italy. We report a case of human sporotrichosis in which S. mexicana was isolated from a patient in Portugal.(undefined

    Metabolic network reconstruction of the central carbon metabolism of Enterococcus faecalis

    Get PDF
    The profound advance in experimental high throughput techniques (generally referred to as “omics techniques”) has enabled the analysis of a large number of components within a living cell. The vast amount of data obtained from the different “omics” (genomics, proteomics, fluxomics, metabolomics, transcriptomics) demands the use of bioinformatics tools. These methods comprise the development of comparative tools and maintenance of databases for the analysis of genomics data, in addition to the construction of models for the analysis and integration of data in a system-wide approach. Enterococcus faecalis is a Gram-positive bacterium that is getting more attention due to its “two-face” behavior. This natural inhabitant of the mammalian gastrointestinal tract is also an opportunist pathogen responsible for urinary tract infections, nosocomial infections, bacteremia and infective endocarditis. Besides, its intrinsic physiological properties such as inherent antibiotic resistance and exceptional ability to adapt to harsh conditions provide this organism with an enormous advantage in the infection processes. Here, we propose to reconstruct the genome scale metabolic network of the central carbon metabolism of Enterococcus faecalis using genome sequencing information available on different databases as well as proteomics and metabolomics data. The first metabolic model generated for this bacterium will allow correlating metabolite levels and fluxes which enables identification of key control points in its metabolism. As it has been previously shown for other organisms, the metabolic network reconstruction may serve as a valuable tool to predict the phenotypic behaviour under various genetic and environmental conditions

    Genome scale metabolic network reconstruction of pathogen – Enterococcus faecalis

    Get PDF
    Enterococcus faecalis is a Gram-positive bacterium that is getting more attention due to its “two-face” behavior. This natural inhabitant of the gastrointestinal mammalian tract is also an opportunist pathogen responsible for urinary tract infections, nosocomial infections, bacteremia and infective endocarditis (1). Since the metabolic reconstruction of Haemophilus influenzae was published in 1999 (2), many other researchers have focused their attention into the possibilities that the new era of genome-scale metabolic models could bring to the scientific scene, both in prokaryotic and eukaryotic organisms
    corecore