18 research outputs found

    Impact of Transphyseal Elastic Nailing On the Histostructure of the Tibia in Growing Animals (Non-Randomized Controlled Experimental Study)

    Get PDF
    BACKGROUND: The use of intramedullary elastic nailing is a method of choice for prevention of complications in children with osteogenesis imperfecta. However, the morphology of the growing long bones in the conditions created was not investigated. AIM: The purpose of our experiment was to study the impact of elastic intramedullary nailing on the histostructure of long bones in their physiological growth. METHODS: Six mongrel dogs underwent intramedullary elastic transphyseal nailing of the intact tibia with two titanium wires. Six months after nailing, a light-optical microscopic and histomorphometric study of the operated and contralateral tibiae was performed. RESULTS: It was found that asymmetric lesion of the distal physis induces a decrease in the height of the distal epimetaphysis. Adaptive changes in the hyaline cartilage of both articular ends were revealed corresponding to the initial stage of chondropathy. Intramedullary nailing promotes an increase in the thickness of the compact bone and the volume of the trabecular bone. CONCLUSIONS: Elastic transphyseal nailing of the intact tibia has a shaping effect which is expressed by an increase in the volume of spongy and compact bone, adaptive changes in the hyaline cartilage. Asymmetric damage to growth zones should be avoided to prevent deformities

    Advantages of Nanosensors in the Development of Interfaces for Bioelectric Prostheses

    Get PDF
    The present research aims to explore the bioelectric activity of muscles using a high-resolution electromyograph and to analyze the prospects of the electromyograph to develop bioelectric patterns for the prosthesis control method based on the data recognition system. The activity of the healthy forearm muscles was investigated during the cyclic activity of fingers in different modes. In addition, the impact of filters on the quality and informativity of myoelectric signals, as well as on the development of bioelectric activity patterns was analyzed. The virtually developed bandpass filters were utilized as experimental filters. The filter impact analysis included the comparison of the signal recorded in the frequency band from 0 to 10000 Hz with the signal filtered in the frequency band from 20 to 500 Hz. The research revealed the advantages of a high-resolution electromyogram for the pattern recognition-based myocontrol

    Advantages of Nanosensors in the Development of Interfaces for Bioelectric Prostheses

    Get PDF
    The present research aims to explore the bioelectric activity of muscles using a high-resolution electromyograph and to analyze the prospects of the electromyograph to develop bioelectric patterns for the prosthesis control method based on the data recognition system. The activity of the healthy forearm muscles was investigated during the cyclic activity of fingers in different modes. In addition, the impact of filters on the quality and informativity of myoelectric signals, as well as on the development of bioelectric activity patterns was analyzed. The virtually developed bandpass filters were utilized as experimental filters. The filter impact analysis included the comparison of the signal recorded in the frequency band from 0 to 10000 Hz with the signal filtered in the frequency band from 20 to 500 Hz. The research revealed the advantages of a high-resolution electromyogram for the pattern recognition-based myocontrol

    Use of sliding transphyseal flexible intramedullary nailing in pediatric osteogenesis imperfecta patients

    No full text
    Introduction. In our country the sliding Flexible Intramedullary Nailing is used alone or in combination with Ilizarov frame in children with osteogenesis imperfecta. The study assesses the results of sliding intramedullary nailing in deformity correction in severe types of osteogenesis imperfecta.Materials and Methods. We retrospectively reviewed 17 consecutive cases (mean age 5.2 y.o.) of types III, IV and VII of osteogenesis imperfecta.In group I (9 patients) the transphyseal FIN was performed using titanium nails. Sliding flexible intramedullary nailing was associated with Ilizarov frame in group II in 8 children.Results. Patients in group I had overall complication rate of 88.9%: proximal nail migration (3), early secondary torsional displacement (4), non-telescoping (12), angular deformity (2), delayed or non-union (2). The reoperation rate was 100%.In group II we observed complications in 6 patients: nail migration (2), bowing of femur (2), non-telescoping (3). The reoperation rate was 87.5%.Conclusion. Flexible intramedullary nailing allows realignment and good functional outcomes. Its major disadvantage is an important complication rate and related reoperation rate. The use of Ilizarov frame provides additional stability and allows early weight-bearing.

    Current approaches to flexible intramedullary nailing for bone lengthening in children

    No full text
    Limb-length discrepancies and extremity deformities are among the most common non-traumatic orthopaedic conditions for which children are hospitalised. There is a need to develop new treatment options for lower-limb length discrepancy in order to ameliorate treatment outcomes, avoid or reduce rates of complication and provide early rehabilitation. The authors report on the basic principles, experimental and clinical data, advantages, problems and complications of a combined technique associating the Ilizarov method and flexible intramedullary nailing (FIN) in limb lengthening and deformity correction in children. They describe features of the use of hydroxyapatite-coated intramedullary nails in patients with certain metabolic bone disorders and in cases where bone consolidation has been compromised. The advantages of bone lengthening using a combined technique (circular fixator plus FIN) are a lower healing index, quicker distraction-consolidation, a reduced rate of septic and bone complications, the ability to correct deformities gradually and the increased stability of bone fragments during the external fixation period and after frame removal

    The normal radiological anteroposterior alignment of the lower limb in children

    No full text
    The development of reconstructive surgery of the lower limbs aimed at multilevel correction demands a precise knowledge of the physiological variations in general radiological parameters of the lower limbs in children of various age groups. It is crucial in systemic skeletal diseases, when deformities affect limbs and the surgeon does not have an intact limb as a reference. The aim of this retrospective study was to establish the normal radiological values of lower limb parameters used in the surgical correction of deformities in children of various age groups

    Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis

    No full text
    Abstract A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium–phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires’ pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes

    Advantages of Nanosensors in the Development of Interfaces for Bioelectric Prostheses

    No full text
    The present research aims to explore the bioelectric activity of muscles using a high-resolution electromyograph and to analyze the prospects of the electromyograph to develop bioelectric patterns for the prosthesis control method based on the data recognition system. The activity of the healthy forearm muscles was investigated during the cyclic activity of fingers in different modes. In addition, the impact of filters on the quality and informativity of myoelectric signals, as well as on the development of bioelectric activity patterns was analyzed. The virtually developed bandpass filters were utilized as experimental filters. The filter impact analysis included the comparison of the signal recorded in the frequency band from 0 to 10000 Hz with the signal filtered in the frequency band from 20 to 500 Hz. The research revealed the advantages of a high-resolution electromyogram for the pattern recognition-based myocontrol
    corecore