1,729 research outputs found

    Chiral QCD, General QCD Parameterization and Constituent Quark Models

    Full text link
    Several recent papers -using effective QCD chiral Lagrangians- reproduced results obtained with the general QCD parameterization (GP). These include the baryon 8+10 mass formula, the octet magnetic moments and the coincidental nature of the "perfect" -3/2 ratio between the magnetic moments of p and n. Although we anticipated that the GP covers the case of chiral treatments, the above results explicitly exemplify this fact. Also we show by the GP that -in any model or theory (chiral or non chiral) reproducing the results of exact QCD- the Franklin (Coleman Glashow) sum rule for the octet magnetic moments must be violated.Comment: 10 pages, Latex; abridged version (same results), removed some reference

    Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings

    Full text link
    Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance (T) and parity (P). Assuming the CPT theorem this implies CP-violation. The CP-violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of CP violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich with an ultimate goal to reach a sensitivity of 10^{-29} e cm.Comment: 8 pages, 2 figure

    Hyperon Polarization in the Constituent Quark Model

    Get PDF
    We consider mechanism for hyperon polarization in inclusive production. The main role belongs to the orbital angular momentum and polarization of the strange quark-antiquark pairs in the internal structure of the constituent quarks. We consider a nucleon as a core consisting of the constituent quarks embedded into quark condensate. The nonperturbative hadron structure is based on the results of chiral quark models.Comment: 14 pages, LaTeX, 2 Figures, References adde

    Magnetic moments of charged hyperons

    Full text link
    Measurements of the magnetic moments of the Ξ−, Σ+ and Σ− baryons are presented. The values found are μΞ−=−.69±.04, μΣ+=2.31±.027 and μΣ−=−.89±.14, in units μN. The Ξ− and Σ− results are final, while the Σ+ value is based on a preliminary analysis of about 22% of the data sample.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87403/2/58_1.pd

    The Neutralino Relic Density in Minimal N=1 Supergravity

    Full text link
    We compute the cosmic relic (dark matter) density of the lightest supersymmetric particle (LSP) in the framework of minimal N=1N=1 Supergravity models with radiative breaking of the electroweak gauge symmetry. To this end, we re--calculate the cross sections for all possible annihilation processes for a general, mixed neutralino state with arbitrary mass. Our analysis includes effects of all Yukawa couplings of third generation fermions, and allows for a fairly general set of soft SUSY breaking parameters at the Planck scale. We find that a cosmologically interesting relic density emerges naturally over wide regions of parameter space. However, the requirement that relic neutralinos do not overclose the universe does not lead to upper bounds on SUSY breaking parameters that are strictly valid for all combinations of parameters and of interest for existing or planned collider experiments; in particular, gluino and squark masses in excess of 5 TeV cannot strictly be excluded. On the other hand, in the ``generic'' case of a gaugino--like neutralino whose annihilation cross sections are not ``accidentally'' enhanced by a nearby Higgs or ZZ pole, all sparticles should lie within the reach of the proposed pppp and e+ee^+e^- supercolliders. We also find that requiring the LSP to provide all dark matter predicted by inflationary models imposes a strict lower bound of 40 GeV on the common scalar mass mm at the Planck scale, while the lightest sleptons would have to be heavierComment: 53 pages(8figs are not included), Latex file; DESY 92-101, SLAC-PUB-586

    Search for polarization in Ξ0 hyperons

    Full text link
    Inclusive hyperon production by 400 GeV protons at Fermilab has shown that the hyperons are produced with significant polarization. However no polarization has been seen for Λ’s produced at these energies. In this paper we present the results of a searcch for Ξ0 polarization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87405/2/126_1.pd

    Polarization of inclusively produced hyperons

    Full text link
    We report here polarization results from a series of Fermilab experiments from the years 1974 through 1980, with some preliminary data from a high pT polarization experiment completed in February 1982. The Λ polarization has a remarkably simple and interesting behavior when expressed as a function of xF and pT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87407/2/83_1.pd

    Measurement of Dijet Angular Distributions at CDF

    Get PDF
    We have used 106 pb^-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.Comment: 16 pages, 2 figures, 2 tables, LaTex, using epsf.sty. Submitted to Physical Review Letters on September 17, 1996. Postscript file of full paper available at http://www-cdf.fnal.gov/physics/pub96/cdf3773_dijet_angle_prl.p

    Search for charged Higgs decays of the top quark using hadronic tau decays

    Full text link
    We present the result of a search for charged Higgs decays of the top quark, produced in ppˉp\bar{p} collisions at s=\surd s = 1.8 TeV. When the charged Higgs is heavy and decays to a tau lepton, which subsequently decays hadronically, the resulting events have a unique signature: large missing transverse energy and the low-charged-multiplicity tau. Data collected in the period 1992-1993 at the Collider Detector at Fermilab, corresponding to 18.7±\pm0.7~pb1^{-1}, exclude new regions of combined top quark and charged Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp; submitted to Phys. Rev.

    Inclusive jet cross section in pˉp{\bar p p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The inclusive jet differential cross section has been measured for jet transverse energies, ETE_T, from 15 to 440 GeV, in the pseudorapidity region 0.1η\leq | \eta| \leq 0.7. The results are based on 19.5 pb1^{-1} of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with ET>200E_T>200 GeV is significantly higher than current predictions based on O(αs3\alpha_s^3) perturbative QCD calculations. Various possible explanations for the high-ETE_T excess are discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review Letter
    corecore