4 research outputs found

    Emission of fine particles (PM2.5) from residential biomass combustion in Croatia and how to reduce it

    Get PDF
    Wood burning in residential appliances is very represented in the Republic of Croatia. It is a main or an additional form of heating for many households in rural and urban areas and is therefore an important source of air pollution. The choice of energy and the combustion appliance used in home have a significant impact on PM2.5 emissions. The paper informs the reader about PM2.5 emissions, their main sources and impacts on human health, environment, climate, air quality, and the reason why PM2.5 emissions from residential wood burning are harmful. Paper also gives an overview of spatial PM2.5 emission distribution in Croatia, their five air quality zones and four agglomerations. The paper analyses the sources and their contribution to PM2.5 emissions with the relevance of PM2.5 emissions from residential plants, the use of fuels in residential plants and their contribution to PM2.5 emissions and PM2.5 emissions by fuel combustion technologies in residential sector. Appropriate strategies, policies, and actions to reduce the impact of residential biomass (wood) burning on the environment, air quality and human health are considered

    THE IMPACT OF CLIMATE POLICY AND CLIMATE CHANGE ON PM2.5 EMISSION FROM RESIDENTIAL WOOD COMBUSTION

    Get PDF
    Residential wood combustion is the dominant source of particulate matter PM2.5 in the Republic of Croatia. Although the wood biomass is considered a green, sustainable energy source, at the same time the inhalation of PM2.5 particles from residential wood combustion, is associated with harmful effects on human health. The paper analyzes the variability of PM2.5 emission regarding three factors, which are closely related to climate policy and climate change. The first factor is related to the intro-duction of new, more environmentally friendly wood biomass combustion technologies. The second factor relates to the con-sumption of wood biomass depending on climate variability. The third factor refers to the implementation of measures for energy renovation of family houses. The aim of this paper is to distinguish the contribution of individual factors, both on the historical PM2.5 emissions from residential wood combustion, and on the emission projections up to the year 2050

    The impact of a modal shift in transport on emissions to the atmosphere: Methodology development for the best use of the available information and expertise in the Danube Region.

    Get PDF
    A modal shift in transport can represent a promising option where the economic added value is demonstrated. However, the impact of this action on the environment is important as well. In the framework of the JRC scientific support to the Danube Strategy, the EDGAR modal shift initiative focuses on the emissions evaluation for ex-post modal shift scenarios, as a contribution to the Danube Air Nexus. Given the complexity of this topic, a methodology for the best use of the available information and expertise in the Danube Region has been developed and is presented in this report. This work is the outcome of the joint efforts of the JRC/EDGAR team, country emission experts and relevant institutions in the Danube Region. It shows that, in addition to the EDGAR data and gridding tool, the participation by and contributions of experts from the Danube Region is essential in compiling emissions from the transport sector and enriching knowledge of variations in national circumstances, on inland domestic and international shipping and by bringing details of ship and truck freight transport. Considering the transboundary characteristics of the transport sector, the EDGAR team developed a Web-based emissions gridding tool (EDGAR.ms) to be used by experts, institutions and authorities in the region to distribute emissions from road transport sector in a consistent manner. Emission experts from four countries (Hungary, Romania, Serbia and Croatia) tested the EDGAR.ms tool with their national data and this user friendly application is now available to all country emission experts in the Danube Region (upon request). Regarding navigation, the contribution of Viadonau and Danube Commission is essential to evaluate ship emissions. It is appreciated that, this scientific network, which includes both EU and Non-EU countries, has the capability to explore and evaluate emissions changes from a modal shift in transport and to identify the advantages and drawbacks related to emission patterns changes but to be fully comprehensive, this undertaking requires participation/contribution from specialized institutions in the region and country emission experts from the entire Danube Region.JRC.H.2-Air and Climat

    Impact evaluation of biomass used in small combustion activities sector on air emissions: Analyses of emissions from Alpine, Adriatic-Ionian and Danube EU macro-regions by using the EDGAR emissions inventory

    Get PDF
    The emissions from small stationary combustion activities sector, in particular from the energy needs for residential buildings, have significant shares in total emissions of EU28. Therefore, measures to mitigate the emissions from this less regulated sector related to implementation checking are needed. In this study, we analysed the changes in fuel mix for this sector over 1990-2012 period, the emissions and their distribution over the areas covered by European Union Strategy for Alpine macro-region (EUSALP), European Union Strategy for Adriatic and Ionian macro-region (EUSAIR) and European Union Strategy for Danube macro-region (EUSDR). The emissions gridmaps of fine particulate matter (PM2.5), black carbon (BC) and benzo(a)pyren (BaP) are presented for the year 2010; in specific circumstances, these pollutants are known to produce negative effects on health. For this research, we used the data and information of the Emissions Database for Global Atmospheric Research (EDGAR) versions v4.3.2 and v4.tox3. Accurate emissions estimates are important to evaluate the impacts of fuel combustion in small stationary combustion activities sector on air quality, human health and crops. Inventories of GHGs, air pollutants and toxic pollutants included in EDGAR are developed by using, as input, fuel consumption from IEA (2014) and emissions factors from scientific literature and official guidebooks such as EMEP/EEA (2013). Working together with emissions inventory experts from selected countries in these macro-regions, the effects of improvements of fuel consumption statistics, biomass in particular, on emissions in the latest years have been quantified by comparing EDGAR data with national data. Besides sectorial emissions estimation, the emissions distribution is also important in the inventory development process. In order to distribute emissions consistently for all countries included in Alpine, Adriatic-Ionian and Danube macro-regions, the EDGAR team upgraded the WEB-based gridding tool with a module for small stationary combustion activities. Emissions estimation and distribution are key elements in preparing a complete input for chemical transport models and further evaluate the impacts of these emissions on air quality, health and crops. This report aims to provide the policy makers and scientists insights on the representativeness and uncertainty of local emissions from the residential sector that play an important role on air quality. These datasets can be used as input for the atmospheric chemical transport models for air pollutants and can illustrate the importance of emission inventory uncertainties and discrepancies.JRC.C.5-Air and Climat
    corecore