56 research outputs found
Recommended from our members
Observations of total RONO2 over the boreal forest: NO x sinks and HNO3 sources
In contrast with the textbook view of remote chemistry where HNO 3 formation is the primary sink of nitrogen oxides, recent theoretical analyses show that formation of RONO2 (ΣANs) from isoprene and other terpene precursors is the primary net chemical loss of nitrogen oxides over the remote continents where the concentration of nitrogen oxides is low. This then increases the prominence of questions concerning the chemical lifetime and ultimate fate of ΣANs. We present observations of nitrogen oxides and organic molecules collected over the Canadian boreal forest during the summer which show that ΣANs account for ∼20% of total oxidized nitrogen and that their instantaneous production rate is larger than that of HNO3. This confirms the primary role of reactions producing ΣANs as a control over the lifetime of NOx (NOx =NO+NO2) in remote, continental environments. However, HNO 3 is generally present in larger concentrations than ΣANs indicating that the atmospheric lifetime of ΣANs is shorter than the HNO3 lifetime. We in-vestigate a range of proposed loss mechanisms that would explain the inferred lifetime of ΣANs finding that in combination with deposition, two processes are consistent with the observations: (1) rapid ozonolysis of isoprene nitrates where at least ∼40% of the ozonolysis producs t ts release NOx from the carbon backbone and/or (2) hydrolysis of particulate organic nitrates with HNO3 as a product. Implications of these ideas for our understanding of NOx and NOy budget in remote and rural locations are discussed. © Author(s) 2013
Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008
High-resolution in situ CO2 measurements were conducted aboard the NASA DC-8 aircraft during the ARCTAS/POLARCAT field campaign, a component of the wider 2007-2008 International Polar Year activities. Data were recorded during large-scale surveys spanning the North American sub-Arctic to the North Pole from 0.04 to 12 km altitude in spring and summer of 2008. Influences on the observed CO2 concentrations were investigated using coincident CO, black carbon, CH3CN, HCN, O3, C2Cl4, and Δ14CO2 data, and the FLEXPART model. In spring, the CO2 spatial distribution from 55̊N to 90̊N was largely determined by the long-range transport of air masses laden with Asian anthropogenic pollution intermingled with Eurasian fire emissions evidenced by the greater variability in the mid-to-upper troposphere. At the receptor site, the enhancement ratios of CO2 to CO in pollution plumes ranged from 27 to 80 ppmv ppmv-1 with the highest anthropogenic content registered in plumes sampled poleward of 80̊N. In summer, the CO2 signal largely reflected emissions from lightning-ignited wildfires within the boreal forests of northern Saskatchewan juxtaposed with uptake by the terrestrial biosphere. Measurements within fresh fire plumes yielded CO2 to CO emission ratios of 4 to 16 ppmv ppmv-1 and a mean CO2 emission factor of 1698 ± 280 g kg-1 dry matter. From the 14C in CO2 content of 48 whole air samples, mean spring (46.6 ± 4.4%) and summer (51.5 ± 5%) D14CO2 values indicate a 5%seasonal difference. Although the northern midlatitudes were identified as the emissions source regions for the majority of the spring samples, depleted Δ14CO2 values were observed in <1% of the data set. Rather, ARCTAS Δ14CO2 observations (54%) revealed predominately a pattern of positive disequilibrium (1-7%) with respect to background regardless of season owing to both heterotrophic respiration and fire-induced combustion of biomass. Anomalously enriched Δ14CO2 values (101-262%) measured in emissions from Lake Athabasca and Eurasian fires speak to biomass burning as an increasingly important contributor to the mass excess in Δ14CO2 observations in a warming Arctic, representing an additional source of uncertainty in the quantification of fossil fuel CO2
Recommended from our members
Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley
Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8-13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley
Recommended from our members
Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign
©2015. American Geophysical Union. All Rights Reserved. As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NOx (LNOx) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14ppbv of O3, respectively, downwind of the storm over 2days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNOx. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.0±0.5 and 2.3±0.5pptvppbv-1, respectively, and 1.4±0.3pptvppbv-1 for acrolein in the outflow only
Recommended from our members
Agricultural fires in the southeastern US during SEAC(4)RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol
Recommended from our members
Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications
Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 ± 570 Gg yr-1) is over 3 times that of the NEI PM2.5 estimate and is also higher thanthe PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions
- …