12 research outputs found

    Positive approximations of the inverse of fractional powers of SPD M-matrices

    Full text link
    This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the dimension of the computational domain. More recently, an alternative approach aimed at reducing the computational complexity was developed. The linear algebraic system Aαu=f\cal A^\alpha \bf u=\bf f, 0<α<10< \alpha <1 is considered, where A\cal A is a properly normalized (scalded) symmetric and positive definite matrix obtained from finite element or finite difference approximation of second order elliptic problems in Ω⊂Rd\Omega\subset\mathbb{R}^d, d=1,2,3d=1,2,3. The method is based on best uniform rational approximations (BURA) of the function tβ−αt^{\beta-\alpha} for 0<t≤10 < t \le 1 and natural β\beta. The maximum principles are among the major qualitative properties of linear elliptic operators/PDEs. In many studies and applications, it is important that such properties are preserved by the selected numerical solution method. In this paper we present and analyze the properties of positive approximations of A−α\cal A^{-\alpha} obtained by the BURA technique. Sufficient conditions for positiveness are proven, complemented by sharp error estimates. The theoretical results are supported by representative numerical tests

    Prediction of Temperature-Controlled Regimes of Foundation-Bed Soils in the Cryolithic Zone

    No full text

    Efficient Numerical Solution of Space-Fractional Diffusion Problems

    No full text
    An efficient numerical method is introduced for the solution of space-fractional diffusion problems. We use the spectral fractional Laplacian operator with homogeneous Neumann and Dirichlet boundary conditions. The spatial discretization is based on the matrix transformation method. Using a recent algorithm for the computation of fractional matrix power-vector products and explicit time stepping, we develop a simple and efficient full discretization. The performance of our approach is demonstrated in some numerical experiments
    corecore