112 research outputs found

    Turbulent ‘stopping plumes’ and plume pinch-off in uniform surroundings

    Get PDF
    Observations of turbulent convection in the environment are of variously sus- tained plume-like flows or intermittent thermal-like flows. At different times of the day the prevailing conditions may change and consequently the observed flow regimes may change. Understanding the link between these flows is of practical importance meteorologically, and here we focus our interest upon plume-like regimes that break up to form thermal-like regimes. It has been shown that when a plume rises from a boundary with low conductivity, such as arable land, the inability to maintain a rapid enough supply of buoyancy to the plume source can result in the turbulent base of the plume separating and rising away from the source. This plume ‘pinch-off’ marks the onset of the intermittent thermal-like behavior. The dynamics of turbulent plumes in a uniform environment are explored in order to investigate the phenomenon of plume pinch-off. The special case of a turbulent plume having its source completely removed, a ‘stopping plume’, is considered in particular. The effects of forcing a plume to pinch-off, by rapidly reducing the source buoyancy flux to zero, are shown experi- mentally. We release saline solution into a tank filled with fresh water generating downward propagating steady turbulent plumes. By rapidly closing the plume nozzle, the plumes are forced to pinch-off. The plumes are then observed to detach from the source and descend into the ambient. The unsteady buoyant region produced after pinch-off, cannot be described by the power-law behavior of either classical plumes or thermals, and so the terminology ‘stopping plume’ (analogous to a ‘starting plume’) is adopted for this type of flow. The propagation of the stopping plume is shown to be approximately linearly dependent on time, and we speculate therefore that the closure of the nozzle introduces some vorticity into the ambient, that may roll up to form a vortex ring dominating the dynamics of the base of a stopping plume

    p53 Interacts with RNA Polymerase II through Its Core Domain and Impairs Pol II Processivity In Vivo

    Get PDF
    The tumor suppressor p53 principally functions as a gene-specific transcription factor. p53 triggers a variety of anti-proliferative programs by activating or repressing the transcription of effector genes in response to genotoxic stress. To date, much effort has been placed on understanding p53's ability to affect transcription in the context of its DNA-binding activity. How p53 regulates transcriptional output independent of DNA binding is less well understood. Here we provide evidence that human p53 can physically interact with the large subunit of RNA polymerase II (Pol II) both in in vitro interaction assays and in whole cell extracts, and that this interaction is mediated (at least in part) through p53's core DNA-binding domain and the Ser5-phosphorylated CTD of Pol II. Ectopic expression of p53, combined with mutations in transcription elongation factors or exposure to drugs that inhibit Pol II elongation, elicit sickness or lethality in yeast cells. These phenotypes are suppressed by oncogenic point mutations within p53's core domain. The growth phenotypes raise the possibility that p53 impairs Pol II elongation. Consistent with this, a p53-dependent increase in Pol II density is seen at constitutively expressed genes without a concomitant increase in transcript accumulation. Additionally, p53-expressing yeast strains exhibit reduced transcriptional processivity at an episomal reporter gene; this inhibitory activity is abolished by a core domain point mutation. Our results suggest a novel mechanism by which p53 can regulate gene transcription, and a new biological function for its core domain that is susceptible to inactivation by oncogenic point mutations

    ADEPT - Abnormal Doppler Enteral Prescription Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancies complicated by abnormal umbilical artery Doppler blood flow patterns often result in the baby being born both preterm and growth-restricted. These babies are at high risk of milk intolerance and necrotising enterocolitis, as well as post-natal growth failure, and there is no clinical consensus about how best to feed them. Policies of both early milk feeding and late milk feeding are widely used. This randomised controlled trial aims to determine whether a policy of early initiation of milk feeds is beneficial compared with late initiation. Optimising neonatal feeding for this group of babies may have long-term health implications and if either of these policies is shown to be beneficial it can be immediately adopted into clinical practice.</p> <p>Methods and Design</p> <p>Babies with gestational age below 35 weeks, and with birth weight below 10th centile for gestational age, will be randomly allocated to an "early" or "late" enteral feeding regimen, commencing milk feeds on day 2 and day 6 after birth, respectively. Feeds will be gradually increased over 9-13 days (depending on gestational age) using a schedule derived from those used in hospitals in the Eastern and South Western Regions of England, based on surveys of feeding practice. Primary outcome measures are time to establish full enteral feeding and necrotising enterocolitis; secondary outcomes include sepsis and growth. The target sample size is 400 babies. This sample size is large enough to detect a clinically meaningful difference of 3 days in time to establish full enteral feeds between the two feeding policies, with 90% power and a 5% 2-sided significance level. Initial recruitment period was 24 months, subsequently extended to 38 months.</p> <p>Discussion</p> <p>There is limited evidence from randomised controlled trials on which to base decisions regarding feeding policy in high risk preterm infants. This multicentre trial will help to guide clinical practice and may also provide pointers for future research.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN: 87351483</p

    Identifying a Window of Vulnerability during Fetal Development in a Maternal Iron Restriction Model

    Get PDF
    It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring
    • …
    corecore