23 research outputs found

    A Case Study for Large-Scale Human Microbiome Analysis Using JCVI’s Metagenomics Reports (METAREP)

    Get PDF
    As metagenomic studies continue to increase in their number, sequence volume and complexity, the scalability of biological analysis frameworks has become a rate-limiting factor to meaningful data interpretation. To address this issue, we have developed JCVI Metagenomics Reports (METAREP) as an open source tool to query, browse, and compare extremely large volumes of metagenomic annotations. Here we present improvements to this software including the implementation of a dynamic weighting of taxonomic and functional annotation, support for distributed searches, advanced clustering routines, and integration of additional annotation input formats. The utility of these improvements to data interpretation are demonstrated through the application of multiple comparative analysis strategies to shotgun metagenomic data produced by the National Institutes of Health Roadmap for Biomedical Research Human Microbiome Project (HMP) (http://nihroadmap.nih.gov). Specifically, the scalability of the dynamic weighting feature is evaluated and established by its application to the analysis of over 400 million weighted gene annotations derived from 14 billion short reads as predicted by the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline. Further, the capacity of METAREP to facilitate the identification and simultaneous comparison of taxonomic and functional annotations including biological pathway and individual enzyme abundances from hundreds of community samples is demonstrated by providing scenarios that describe how these data can be mined to answer biological questions related to the human microbiome. These strategies provide users with a reference of how to conduct similar large-scale metagenomic analyses using METAREP with their own sequence data, while in this study they reveal insights into the nature and extent of variation in taxonomic and functional profiles across body habitats and individuals. Over one thousand HMP WGS datasets and the latest open source code are available at http://www.jcvi.org/hmp-metarep

    Multiple Envelope Stress Response Pathways Are Activated in an Escherichia coli Strain with Mutations in Two Members of the DedA Membrane Protein Family

    No full text
    We have reported that simultaneous deletion of two Escherichia coli genes, yqjA and yghB, encoding related and conserved inner membrane proteins belonging to the DedA protein family results in a number of intriguing phenotypes, including temperature sensitivity at 42°C, altered membrane lipid composition, and cell division defects. We sought to characterize these and other phenotypes in an effort to establish a function for this protein family in E. coli. Here, using reporter assays, we show that the major envelope stress response pathways Cpx, Psp, Bae, and Rcs are activated in strain BC202 (W3110; ΔyqjA ΔyghB) at the permissive growth temperature of 30°C. We previously demonstrated that 10 mM Mg(2+), 400 mM NaCl, and overexpression of tatABC are capable of restoring normal growth to BC202 at elevated growth temperatures. Deletion of the cpxR gene from BC202 results in the loss of the ability of these supplements to restore growth at 42°C. Additionally, we report that the membrane potential of BC202 is significantly reduced and that cell division and growth can be restored either by expression of the multidrug transporter MdfA from a multicopy plasmid or by growth at pH 6.0. Together, these results suggest that the DedA family proteins YqjA and YghB are required for general envelope maintenance and homeostasis of the proton motive force under a variety of growth conditions
    corecore