15 research outputs found

    Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6 using response surface methodology

    Get PDF
    In this research, an attempt has been made to develop mathematical models for predicting mechanical properties including ultimate tensile strength, impact toughness, and hardness of the friction stir-welded AA6061-T6 joints at 95 % confidence level. Response surface methodology with central composite design having four parameters and five levels has been used. The four parameters considered were tool pin profile, rotational speed, welding speed, and tool tilt angle. Three confirmation tests were performed to validate the empirical relations. In addition, the influence of the process parameters on ultimate tensile strength, impact toughness, and hardness were investigated. The results indicated that tool pin profile is the most significant parameter in terms of mechanical properties; tool with simple cylindrical pin profile produced weld with high ultimate tensile strength, impact toughness, and hardness. In addition to tool pin profile, rotational speed was more significant compared to welding speed for ultimate tensile strength and impact toughness, whereas welding speed showed dominancy over rotational speed in case of hardness. Optimum conditions of process parameters have been found at which tensile strength of 92 %, impact toughness of 87 %, and hardness of 95 % was achieved in comparison to the base metal. This research will contribute to expand the scientific foundation of friction stir welding of aluminum alloys with emphasis on AA6061-T6. The results will aid the practitioners to develop a clear understanding of the influence of process parameters on mechanical properties and will allow the selection of best combinations of parameters to achieve desired mechanical properties

    Experimental analysis of constant-amplitude fatigue properties in 6156 (Al-Mg-Si) sheet aluminum alloy

    No full text
    Fatigue mechanical behavior of wrought aluminum alloy (Al-Mg-Si) 6156 at T4 temper is experimentally investigated. Constant-amplitude fatigue tests, at fixed stress ratio R = 0.1, were carried out, and the respective stress–life diagram was constructed and compared against the competitive 6xxx aluminum alloys, for example, 6082 and 6061. Fatigue endurance limit of AA6156 was found to be approximately 155 ± 5 MPa, that is, almost 30% below yield stress Rp of the material. AA6156 presents almost 50% higher fatigue life in the high-cycle fatigue area and approximately 20% higher fatigue endurance limit, when compared with other 6xxx series aluminum alloys. Significant work hardening was induced due to fatigue and was experimentally validated by the measurements of residual stiffness of fatigue loops as well as of absorbed energy per fatigue loop. Work-hardening exponent was essentially decreased by almost 25% from the first fatigue cycles and up to 10% of fatigue life. Fracture surfaces of specimens loaded at applied stresses close to fatigue endurance limit exhibited signs of coarse voids due to the formed precipitates at the matrix. The fracture mechanism was a mixture of transgranunal and intergranular fracture for the fatigue specimens tested at higher applied fatigue loadings
    corecore