77 research outputs found

    Associations of plasma fibrinogen assays, C-reactive protein and interleukin-6 with previous myocardial infarction

    Get PDF
    Background: The association of plasma fibrinogen with myocardial infarction (MI) may (like that of C-reactive protein, CRP) be a marker of subclinical inflammation, mediated by cytokines such as interleukin-6 (IL-6). There are well- recognized discrepancies between commonly performed fibrinogen assays. Increased ratio of clottable fibrinogen to intact fibrinogen (measured by a recently developed immunoassay) has been proposed as a measure of hyperfunctional fibrinogen, and is elevated in acute MI.<br/> Objective: To compare the associations of intact fibrinogen and four routine fibrinogen assays (two von Clauss assays; one prothrombin-time derived; and one immunonephelometric) in a case-control study of previous MI. Patients/methods: Cases (n = 399) were recruited 3-9 months after their event; 413 controls were age- and sex-matched from the case-control study local population. Intact fibrinogen was measured in 50% of subjects. Results: All routine fibrinogen assays showed high intercorrelations (r = 0.82-0.93) and significant (P lt 0.0001) increased mean levels in cases vs. controls. These four routine assays correlated only moderately with intact fibrinogen (r = 0.45-0.62), while intact fibrinogen showed only a small, nonsignificant increase in cases vs. controls. Consequently, the ratio of each of the four routine assays to the intact fibrinogen assay was significantly higher (P lt 0.0003) in cases vs. controls. Each fibrinogen assay correlated with plasma levels of CRP and IL-6 (which were also elevated in cases vs. controls). Each routine fibrinogen assay remained significantly elevated in cases vs. controls after further adjustment for C-reactive protein and interleukin-6. Conclusions: These data provide evidence for acquired, increased hyperfunctional plasma fibrinogen in MI survivors, which is not associated with markers of inflammatory reactions. The causes and significance of these results remain to be established in prospective studies

    Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve.</p> <p>Results</p> <p>We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.</p> <p>Conclusion</p> <p>Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.</p

    Movable genetic elements and antibiotic resistance in enterococci

    Full text link
    The enterococci possess genetic elements able to move from one strain to another via conjugation. Certain enterococcal plasmids exhibit a broad host range among gram-positive bacteria, but only when matings are performed on solid surfaces. Other plasmids are more specific to enterococci, transfer efficiently in broth, and encode a response to recipient-produced sex phermones. Transmissible non-plasmid elements, the conjugative transposons, are widespread among the enterococci and determine their own fertility properties. Drug resistance, hemolysin, and bacteriocin determinants are commonly found on the various transmissible enterococcal elements. Examples of the different systems are discussed in this review.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47900/1/10096_2005_Article_BF01963632.pd

    A prospective study of Helicobacter pylori seropositivity and the risk for future myocardial infarction among socioeconomically similar U.S. men.

    No full text
    BACKGROUND: The role of Helicobacter pylori as a determinant of cardiovascular disease is controversial. OBJECTIVE: To determine whether previous exposure to H. pylori is associated with an increased risk for myocardial infarction. DESIGN: Prospective case-control study. SETTING: Physicians' Health Study. PARTICIPANTS: Initially healthy U.S. men. MEASUREMENTS: Titers of IgG antibody against H. pylori and several inflammatory markers were measured in baseline blood samples obtained from 445 men who subsequently had a myocardial infarction (case-patients) and 445 men matched for age and smoking status who remained free of vascular disease (controls) during a mean follow-up of 8.9 years. RESULTS: Baseline seropositivity was similar among case-patients and controls (43.4% vs. 44.3%; rate ratio, 0.96 [95% CI, 0.7 to 1.3]). Minimal evidence of association was found between magnitude of seropositivity and subsequent risk and between seropositivity and levels of the inflammatory biomarkers. CONCLUSION: In a socioeconomically homogeneous population, we found limited evidence of association between H. pylori exposure and risk for future myocardial infarction

    Hidden polymorphs drive vitrification in B2O3

    Full text link
    Understanding the conditions that favour crystallization or vitrification of liquids has been a long-standing scientific problem(1-3). Another connected, and not yet well understood question is the relationship between the glassy and the various possible crystalline forms a system may adopt(4,5). In this context, B2O3 represents a puzzling case. It is one of the best glass-forming systems despite an apparent lack of low-pressure polymorphism. Furthermore, the system vitrifies in a glassy form abnormally different from the only known crystalline phase at ambient pressure(6). Last but not least, it never crystallizes from the melt unless pressure is applied, an intriguing behaviour known as the crystallization anomaly(7-9). Here, by means of ab initio calculations, we discover the existence of previously unknown B2O3 crystalline polymorphs with structural properties similar to the glass and formation energies comparable to the known ambient crystal. The energy degeneracy of the crystals, which is high at ambient pressure and suppressed under pressure, provides a framework to understand the system's ability to vitrify and the origin of the crystallization anomaly. This work reconciles the behaviour of B2O3 with that from other glassy systems and reaffirms the role played by polymorphism in a system's ability to vitrify(10,11). Some of the predicted crystals are cage-like materials entirely made of three-fold rings, opening new perspectives for the synthesis of boron-based nanoporous materials
    corecore