6,129 research outputs found

    Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    Get PDF
    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of −1.06 W m−2 in the PI era but only −0.56 W m−2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a −50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between −1.16 W m−2 and −0.86 W m−2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate

    The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003

    Get PDF
    Many past studies of cosmological gamma-ray bursts (GRBs) have been limited because of the large distance to typical GRBs, resulting in faint afterglows. There has long been a recognition that a nearby GRB would shed light on the origin of these mysterious cosmic explosions, as well as the physics of their fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an estimated rate of localisation of one every decade. Here, we report the discovery of bright optical afterglow emission from GRB 030329. Our prompt dissemination and the brilliance of the afterglow resulted in extensive followup (more than 65 telescopes) from radio through X-ray bands, as well as measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of GRB 030329 are similar to those of cosmological GRBs (after accounting for the small distance), making this the nearest known cosmological GRB. Observations have already securely identified the progenitor as a massive star that exploded as a supernova, and we anticipate futher revelations of the GRB phenomenon from studies of this source.Comment: 13 pages, 4 figures. Original tex

    Integrality gaps of integer knapsack problems

    Get PDF
    We obtain optimal lower and upper bounds for the (additive) integrality gaps of integer knapsack problems. In a randomised setting, we show that the integrality gap of a “typical” knapsack problem is drastically smaller than the integrality gap that occurs in a worst case scenario

    Modeling the Hubble Space Telescope ultraviolet and optical spectrum of spot 1 on the circumstellar ring of SN 1987A

    Get PDF
    We report and interpret Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) long-slit observations of the optical and ultraviolet (1150-10270 Å) emission line spectra of the rapidly brightening spot 1 on the equatorial ring of SN 1987A between 1997 September and 1999 October (days 3869-4606 after outburst). The emission is caused by radiative shocks created where the supernova blast wave strikes dense gas protruding inward from the equatorial ring. We measure and tabulate line identifications, fluxes, and, in some cases, line widths and shifts. We compute flux correction factors to account for substantial interstellar line absorption of several emission lines. Nebular analysis shows that optical emission lines come from a region of cool (T e ≈ 10 4 K) and dense (n e ≈ 10 6 cm -3) gas in the compressed photoionized layer behind the radiative shock. The observed line widths indicate that only shocks with shock velocities V s < 250 km s -1 have become radiative, while line ratios indicate that much of the emission must have come from yet slower (V s ≲ 135 km s -1) shocks. Such slow shocks can be present only if the protrusion has atomic density n ≳ 3 × 10 4 cm -3, somewhat higher than that of the circumstellar ring. We are able to fit the UV fluxes with an idealized radiative shock model consisting of two shocks (V s = 135 and 250 km s -1). The observed UV flux increase with time can be explained by the increase in shock surface areas as the blast wave overtakes more of the protrusion. The observed flux ratios of optical to highly ionized UV lines are greater by a factor of ∼2-3 than predictions from the radiative shock models, and we discuss the possible causes. We also present models for the observed Ha line widths and profiles, which suggest that a chaotic flow exists in the photoionized regions of these shocks. We discuss what can be learned with future observations of all the spots present on the equatorial ring.published_or_final_versio
    corecore