14 research outputs found

    The disruption of GDP-fucose de novo biosynthesis suggests the presence of a novel fucose-containing glycoconjugate in <i>Plasmodium</i> asexual blood stages

    Get PDF
    Glycosylation is an important posttranslational protein modification in all eukaryotes. Besides glycosylphosphatidylinositol (GPI) anchors and N-glycosylation, O-fucosylation has been recently reported in key sporozoite proteins of the malaria parasite. Previous analyses showed the presence of GDP-fucose (GDP-Fuc), the precursor for all fucosylation reactions, in the blood stages of Plasmodium falciparum. The GDP-Fuc de novo pathway, which requires the action of GDP-mannose 4,6-dehydratase (GMD) and GDP-L-fucose synthase (FS), is conserved in the parasite genome, but the importance of fucose metabolism for the parasite is unknown. To functionally characterize the pathway we generated a PfGMD mutant and analyzed its phenotype. Although the labelling by the fucose-binding Ulex europaeus agglutinin I (UEA-I) was completely abrogated, GDP-Fuc was still detected in the mutant. This unexpected result suggests the presence of an alternative mechanism for maintaining GDP-Fuc in the parasite. Furthermore, PfGMD null mutant exhibited normal growth and invasion rates, revealing that the GDP-Fuc de novo metabolic pathway is not essential for the development in culture of the malaria parasite during the asexual blood stages. Nonetheless, the function of this metabolic route and the GDP-Fuc pool that is generated during this stage may be important for gametocytogenesis and sporogonic development in the mosquito

    Maternal TLR4 and NOD2 Gene Variants, Pro-Inflammatory Phenotype and Susceptibility to Early-Onset Preeclampsia and HELLP Syndrome

    Get PDF
    Background: Altered maternal inflammatory responses play a role in the development of preeclampsia and the hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. We examined whether allelic variants of the innate immune receptors toli-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain (NOD2), that impair the inflammatory response to endotexin are related to preeclampsia and HELLP syndrome. Methods and Finding: We determined five common mutations in TLR4 (D299G and T399I and NOD2 (R70W, G908R and L1007fs) in 340 primiparous women with a histo
    corecore