8 research outputs found

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age

    Full text link
    Ataxia telangiectasia (AT) is a rare autosomal recessive disorder characterized by progressive ataxia, neurodegeneration, immunodeficiency, and cancer predisposition. Pathoanatomical studies reported a degeneration of cerebellar Purkinje cells as the striking feature of the disease. Although recent studies suggested the involvement of extracerebellar structures such as the brainstem and basal ganglia, this has rarely been studied in human AT. Thus, we performed a detailed cliniconeuroradiological investigation of 11 AT patients, aged 8 to 26 years by collecting clinical neurological data, ataxia scores, growth status, body mass index (BMI), growth hormone (GH), and insulin-like-growth factor 1 (IGF-1) and correlated them to extracerebellar neuroimaging findings in human AT. Neuroimaging was done by cranial and spine magnetic resonance imaging (MRI) with T1- and T2-weighted spin-echo and fluid attenuated inversion recovery sequences. We compared clinical and neuroradiological findings of six patients with IGF-1 levels and BMI below the third percentile to five patients with normal IGF-1 serum levels and BMI above the third percentile. Three of the six first mentioned patients older than 20 years and two patients older than 12 years showed noticeable high Klockgether ataxia scores above 25 points. Three of these patients presented with marked hyperintense lesions in the cerebral white matter of T2-weighted MR images. Interestingly, all six patients suffered from marked spinal atrophy. Two of the patients presented with severe extra-pyramidal symptoms, but only one patient showed associated MRI abnormalities of the basal ganglia. MRI in patients with normal IGF-1 levels showed the expected cerebellar lesions in four patients, whereas spinal atrophy was found only in two patients. There was no affection of the cerebral white matter or basal ganglia in this group. We conclude that central cerebral white matter affection, spinal atrophy, and extrapyramidal symptoms are more often present in patients with pronounced deficiency of the GH/IGF-1 axis accompanied by markedly reduced body weight and high ataxia scores. This may point to a major role of IGF-1 and nutritional status in neuroprotective signaling

    NADPH oxidases in Parkinson’s disease: a systematic review

    No full text
    Abstract Parkinson’s disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD

    Reactive Oxygen Species and Antioxidants in Pancreatic β-Cell Function – Yin and Yang

    No full text

    Modifier Selection by Transgenes: The Case of Growth Hormone Transgenesis and Hyperactive Circling Mice

    No full text

    NADPH oxidases in Parkinson’s disease: a systematic review

    No full text
    corecore