10 research outputs found

    Heantos-4, a natural plant extract used in the treatment of drug addiction, modulates T-type calcium channels and thalamocortical burst-firing

    No full text
    Heantos-4 is a refined combination of plant extracts currently approved to treat opiate addiction in Vietnam. In addition to its beneficial effects on withdrawal and prevention of relapse, reports of sedation during clinical treatment suggest that arousal networks in the brain may be recruited during Heantos administration. T-type calcium channels are implicated in the generation of sleep rhythms and in this study we examined whether a Heantos-4 extraction modulates T-type calcium channel currents generated by the Cav3.1, Cav3.2 and Ca3.3 subtypes. Utilizing whole-cell voltage clamp on exogenously expressed T-type calcium channels we find that Heantos inhibits Cav3.1 and Cav3.3 currents, while selectively potentiating Cav3.2 currents. We further examined the effects of Heantos-4 extract on low-threshold burst-firing in thalamic neurons which contribute to sleep oscillations. Using whole-cell current clamp in acute thalamic brain slices Heantos-4 suppressed rebound burst-firing in ventrobasal thalamocortical neurons, which express primarily Cav3.1 channels. Conversely, Heantos-4 had no significant effect on the burst-firing properties of thalamic reticular neurons, which express a mixed population of Cav3.2 and Cav3.3 channels. Examining Heantos-4 effects following oral administration in a model of absence epilepsy revealed the potential to exacerbate seizure activity. Together, the findings indicate that Heantos-4 has selective effects both on specific T-type calcium channel isoforms and distinct populations of thalamic neurons providing a putative mechanism underlying its effects on sedation and on the thalamocortical network

    Ca(2+) signaling by T-type Ca(2+) channels in neurons.

    Get PDF
    Among the major families of voltage-gated Ca(2+) channels, the low-voltage-activated channels formed by the Ca(v)3 subunits, referred to as T-type Ca(2+) channels, have recently gained increased interest in terms of the intracellular Ca(2+) signals generated upon their activation. Here, we provide an overview of recent reports documenting that T-type Ca(2+) channels act as an important Ca(2+) source in a wide range of neuronal cell types. The work is focused on T-type Ca(2+) channels in neurons, but refers to non-neuronal cells in cases where exemplary functions for Ca(2+) entering through T-type Ca(2+) channels have been described. Notably, Ca(2+) influx through T-type Ca(2+) channels is the predominant Ca(2+) source in several neuronal cell types and carries out specific signaling roles. We also emphasize that Ca(2+) signaling through T-type Ca(2+) channels occurs often in select subcellular compartments, is mediated through strategically co-localized targets, and is exploited for unique physiological functions

    Lasting impact of general anaesthesia on the brain: mechanisms and relevance

    No full text
    corecore