35 research outputs found

    Antidepressants during and after Menopausal Transition: A Systematic Review and Meta-Analysis

    Get PDF
    To assess the therapeutic benefits of antidepressants in depressive women during and after menopausal transition, PubMed, Cochrane Library, EMBASE and Science Direct were systematically searched from inception to February 1, 2020 for randomized controlled trials examining antidepressants compared to placebo. Primary outcome was change in depressive symptom severity, while secondary outcomes were rates of response/remission rates and dropout/discontinuation due to adverse events. Seven trials involving 1,676 participants (mean age = 52.6 years) showed significant improvement in depressive symptoms (k = 7, Hedges’ g = 0.44, 95% confidence interval (CI) = 0.32 to 0.57, p < 0.001) relative to that in controls. Furthermore, response (k = 3, odds ratio (OR) = 2.53, 95% CI = 1.24 to 5.15, p = 0.01) and remission (k = 3, OR = 1.84, 95% CI = 1.32 to 2.57, p < 0.001) rates were significantly higher in antidepressant-treated groups compared to those with controls. Although dropout rates did not differ between antidepressant and control groups (k = 6, OR = 0.93, 95% CI = 0.70 to 1.26, p = 0.68), the rate of discontinuation due to adverse events was significantly higher in antidepressant-treated groups (k = 6, OR = 0.55, 95% CI = 0.35 to 0.86, p = 0.01). Subgroup analysis indicated that antidepressants were also efficacious for depressive symptoms in those without diagnosis of MDD. The results demonstrated that antidepressants were efficacious for women with depressive syndromes during and after menopausal transition but associated with a higher risk of discontinuation due to adverse events

    Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner

    Get PDF
    The blood vessels of cancerous tumours are leaky and poorly organized. This can increase the interstitial fluid pressure inside tumours and reduce blood supply to them, which impairs drug delivery. Anti-angiogenic therapies—which ‘normalize’ the abnormal blood vessels in tumours by making them less leaky—have been shown to improve the delivery and effectiveness of chemotherapeutics with low molecular weights, but it remains unclear whether normalizing tumour vessels can improve the delivery of nanomedicines. Here, we show that repairing the abnormal vessels in mammary tumours, by blocking vascular endothelial growth factor receptor-2, improves the delivery of smaller nanoparticles (diameter, 12 nm) while hindering the delivery of larger nanoparticles (diameter, 125 nm). Using a mathematical model, we show that reducing the sizes of pores in the walls of vessels through normalization decreases the interstitial fluid pressure in tumours, thus allowing small nanoparticles to enter them more rapidly. However, increased steric and hydrodynamic hindrances, also associated with smaller pores, make it more difficult for large nanoparticles to enter tumours. Our results further suggest that smaller (~12 nm) nanomedicines are ideal for cancer therapy due to their superior tumour penetration.ImClone Systems IncorporatedNational Institutes of Health (U.S.) (P01-CA080124)National Institutes of Health (U.S.) (R01-CA126642)National Institutes of Health (U.S.) (R01-CA115767)National Institutes of Health (U.S.) (R01-CA096915)National Institutes of Health (U.S.) (R01-CA085140)National Institutes of Health (U.S.) (R01-CA098706)National Institutes of Health (U.S.) (T32-CA073479)United States. Dept. of Defense (Breast Cancer Research Innovator Award W81XWH-10-1-0016

    Microdialysis

    No full text

    How minimally invasive is microdialysis sampling? A cautionary note for cytokine collection in human skin and other clinical studies.

    No full text
    It is common to refer to microdialysis as a minimally invasive procedure, likening it to insertion of an artificial capillary. While a comparison of this type allows the process to be easily visualized by those outside the field, it tends to provide a false impression of the localized perturbation of the tissue space that is caused by catheter insertion. With the increased acceptance of microdialysis sampling as a viable in vivo sampling method, many researchers have begun to use the technique to explore inflammatory and immune-mediated diseases in the skin and other organs. Unfortunately, many of the molecules of interest, particularly chemokines and cytokines, are known to be generated during the inflammatory response to wounding and the subsequent cellular events leading to wound repair. With more than 11,000 reports citing the use of microdialysis sampling, only a few researchers have sought to assess the tissue damage that is incurred by probe insertion. For this reason, caution is warranted when collecting these molecules and inferring a role for them in clinical disease states. This commentary seeks to remind the research community of the confounding effects that signaling molecules related to the wounding response will have on clinical studies. Proper controls must be incorporated into all studies in order to assess whether or not particular molecules are truly related to the disease state under investigation or have been generated as part of the tissue response to the wound incurred by microdialysis catheter implantation
    corecore