15 research outputs found

    A multi-scale biophysical model to inform regional management of coral reefs in the western Philippines and South China Sea

    No full text
    The health and functioning of coral reef ecosystems worldwide is in decline, and in the face of increasing anthropogenic stress, the rate of decline of these important ecosystems is set to accelerate. Mitigation strategies at regional scales are costly, but nevertheless critical, as reef systems are highly connected across regions by ocean transport of both larval propagules and pollutants. It is essential that these strategies are informed by sound science, but the inherent complexity of coral reef systems confers significant challenges for scientists and managers. Models are useful tools for dealing with complexity and can inform decision making for coral reef management. We develop a spatially explicit biophysical model for a general coral reef system. The model couples dynamics from local (102 m) to regional (106 m) scales, and explicitly incorporates larval connectivity patterns derived from sophisticated larval dispersal models. Here, we instantiate and validate the model for coral reefs in the Philippines region of the South China Sea. We demonstrate how the model can be used in decision support for coral reef management by presenting two examples of regional-scale scenario projection relating to key management issues in the Philippines: (i) marine reserve design and the recovery of fish stocks; and (ii) synergistic effects between coral bleaching and poor water quality. These scenarios highlight the importance of considering multiple stressors to reef health and patterns of larval connectivity in regional-scale management decisions

    Larval settlement and juvenile development of sea anemones that provide habitat for anemonefish

    No full text
    Sea anemones that host obligate symbiotic anemonefish are ecologically important throughout many coral reef regions of the Indo-Pacific. This study provides the first quantitative data on larval settlement rates and juvenile development of two species of host sea anemone, Heteractis crispa and Entacmaea quadricolor. Larvae were reared from broadcast spawned gametes of sexually reproductive male and female anemones collected from the Solitary Islands Marine Park, NSW, Australia. Prior to the start of the experiments, H. crispa larvae were reared for 3 days after spawning in March 2004 and E. quadricolor larvae were reared for 4 days after spawning in February 2005. Larval settlement onto biologically conditioned terracotta tiles in outdoor flow-through seawater aquaria was first recorded 4 days after spawning for H. crispa and 5 days after spawning for E. quadricolor. Peak settlement occurred 10 days after spawning, with a mean of 33.4 and 50.3% of the original groups of 350 larvae in replicate tanks settling for H. crispa and E. quadricolor, respectively. Tentacles arose as outpocketings of the oral region, at first appearing as small rounded buds. These buds elongated to form long, thin, tapering tentacles in H. crispa, whereas E. quadricolor tentacles had slight bulbs below the tips. Juvenile anemones, especially H. crispa, were found to have very different colouration and markings when compared with adult anemones, and therefore the descriptions and images provided here will enable correct identification of juvenile recruits
    corecore