72 research outputs found

    The WIYN Open Cluster Study: A New Color-Magnitude Diagram for M35 - A Twin of the Pleiades

    Get PDF
    M35 (NGC 2168) is rich, young, and in some regards a bet­ter laboratory for stellar cluster research at 100 million years than the Pleiades. Yet, while M35 has been the subject of intriguing photometric, astrometric, and theoretical studies, to the best of our knowledge no pub­lished CCD-based photometry exists for this cluster. We have obtained relatively wide-field (23\u27 x23\u27) precise UBVRJ CCD photometry for M35 as part of the WIYN Open Cluster Study (WOCS) at the 0.9m telescope at Kitt Peak National Observatory. The photometry extends from the main sequence turn off to beyond V = 19. We find that M35 is ~ 100 Myrs old, with (m-M)v = 10.25, and E(B-V)=0.3 based on fitting Yale isochrones. We also perform a differential comparison between M35 and the Pleiades, and we explore the cluster dynamical state

    HST astrometry in the Orion Nebula Cluster: census of low-mass runaways

    Get PDF
    We present a catalog of high-precision proper motions in the Orion Nebula Cluster (ONC), based on Treasury Program observations with the Hubble Space Telescope's (HST) ACS/WFC camera. Our catalog contains 2,454 objects in the magnitude range of 14.2<mF775W<24.714.2<m_{\rm F775W}<24.7, thus probing the stellar masses of the ONC from ∼\sim0.4 M⊙M_\odot down to ∼\sim0.02 M⊙M_\odot over an area of ∼\sim550 arcmin2^2. We provide a number of internal velocity dispersion estimates for the ONC that indicate a weak dependence on the stellar location and mass. There is good agreement with the published velocity dispersion estimates, although nearly all of them (including ours at σv,x=0.94\sigma_{v,x}=0.94 and σv,y=1.25\sigma_{v,y}=1.25 mas yr−1^{-1}) might be biased by the overlapping young stellar populations of Orion A. We identified 4 new ONC candidate runaways based on HST and the Gaia DR2 data, all with masses less than ∼\sim1 M⊙M_\odot. The total census of known candidate runaway sources is 10 -- one of the largest samples ever found in any Milky Way open star cluster. Surprisingly, none of them has the tangential velocity exceeding 20 km s−1^{-1}. If most of them indeed originated in the ONC, it may compel re-examination of dynamical processes in very young star clusters. It appears that the mass function of the ONC is not significantly affected by the lost runaways.Comment: 16 pages, 10 figures, 5 tables. Accepted for publication in A

    The Southern Proper Motion Program III. A Near-Complete Catalog to V=17.5

    Full text link
    We present the third installment of the Yale/San Juan Southern Proper Motion Catalog, SPM3. Absolute proper motions, positions, and photographic B,V photometry are given for roughly 10.7 million objects, primarily stars, down to a magnitude of V=17.5. The Catalog covers an irregular area of 3700 square degrees, between the declinations of -20 and -45 degrees, excluding the Galactic plane. The proper-motion precision, for well-measured stars, is estimated to be 4.0 mas/yr. Unlike previous releases of the SPM Catalog, the proper motions are on the International Celestial Reference System by way of Hipparcos Catalog stars, and have an estimated systematic uncertainty of 0.4 mas/yr. The SPM3 Catalog is available via electronic transfer,(http://www.astro.yale.edu/astrom/) As an example of the potential of the SPM3 proper motions, we examine the Galactocentric velocities of a group of metal-poor, main-sequence A stars. The majority of these exhibit thick-disk kinematics, lending support to their interpretation as thick-disk blue stragglers, as opposed to being an accreted component.Comment: 23 pages, 10 figures, accepted for publication in Astronomical Journa

    A New Proper Motion Determination of Leo I

    Full text link
    We measure the absolute proper motion of Leo I using a WFPC2/HST data set that spans up to 10 years, to date the longest time baseline utilized for this satellite. The measurement relies on ~ 2300 Leo I stars located near the center of light of the galaxy; the correction to absolute proper motion is based on 174 Gaia EDR3 stars and 10 galaxies. Having generated highly-precise, relative proper motions for all Gaia EDR3 stars in our WFPC2 field of study, our correction to the absolute EDR3 system does not rely on these Gaia stars being Leo I members. This new determination also benefits from a recently improved astrometric calibration of WFPC2. The resulting proper-motion value, (mu_alpha, mu_delta) = (-0.007 +- 0.035, -0.119 +-0.026) mas/yr is in agreement with recent, large-area, Gaia EDR3-based determinations. We discuss all the recent measurements of Leo I's proper motion and adopt a combined, multi-study average of (mu_alpha_3meas, mu_delta_3meas) = (-0.036 +- 0.016, -0.130 +- 0.010) mas/yr. This value of absolute proper motion for Leo I indicates its orbital pole is well aligned with that of the Vast Polar Structure, defined by the majority of the brightest dwarf-spheroidal satellites of the Milky Way.Comment: accepted for publication in The Astronomical Journa
    • …
    corecore