161 research outputs found

    Association of common ATM variants with familial breast cancer in a South American population

    Get PDF
    Background: The ATM gene has been frequently involved in hereditary breast cancer as a low-penetrance susceptibility gene but evidence regarding the role of ATM as a breast cancer susceptibility gene has been contradictory. Methods: In this study, a full mutation analysis of the ATM gene was carried out in patients from 137 Chilean breast cancer families, of which 126 were BRCA1/2 negatives and 11 BRCA1/2 positives. We further perform a case-control study between the subgroup of 126 cases BRCA1/2 negatives and 200 controls for the 5557G > A missense variant and the IVS38-8T > C and the IVS24-9delT polymorphisms. Results: In the full mutation analysis we detected two missense variants and eight intronic polymorphisms. Carriers of the variant IVS24-9delT, or IVS38-8T > C, or 5557G > A showed an increase in breast cancer risk. The higher significance was observed in the carriers of IVS38-8T > C (OR = 3.09 [95% CI 1.11-8.59], p = 0.024). The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype confered a 3.19 fold increase in breast cancer risk (OR = 3.19 [ 95% CI 1.16-8.89], p = 0.021). The haplotype estimation suggested a strong linkage disequilibrium between the three markers (D' = 1). We detected only three haplotypes in the cases and control samples, some of these may be founder haplotypes in the Chilean population. Conclusion: The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype alone or in combination with certain genetic background and/or environmental factors, could modify the cancer risk by increasing genetic inestability or by altering the effect of the normal DNA damage response

    Study protocol for the recreational stimulation for elders as a vehicle to resolve delirium superimposed on dementia (Reserve For DSD) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delirium is a state of confusion characterized by an acute and fluctuating decline in cognitive functioning. Delirium is common and deadly in older adults with dementia, and is often referred to as delirium superimposed on dementia, or DSD. Interventions that treat DSD are not well-developed because the mechanisms involved in its etiology are not completely understood. We have developed a theory-based intervention for DSD that is derived from the literature on cognitive reserve and based on our prior interdisciplinary work on delirium, recreational activities, and cognitive stimulation in people with dementia. Our preliminary work indicate that use of simple, cognitively stimulating activities may help resolve delirium by helping to focus inattention, the primary neuropsychological deficit in delirium. Our primary aim in this trial is to test the efficacy of Recreational Stimulation for Elders as a Vehicle to resolve DSD (RESERVE- DSD).</p> <p>Methods/Design</p> <p>This randomized repeated measures clinical trial will involve participants being recruited and enrolled at the time of admission to post acute care. We will randomize 256 subjects to intervention (RESERVE-DSD) or control (usual care). Intervention subjects will receive 30-minute sessions of tailored cognitively stimulating recreational activities for up to 30 days. We hypothesize that subjects who receive RESERVE-DSD will have: decreased severity and duration of delirium; greater gains in attention, orientation, memory, abstract thinking, and executive functioning; and greater gains in physical function compared to subjects with DSD who receive usual care. We will also evaluate potential moderators of intervention efficacy (lifetime of complex mental activities and APOE status). Our secondary aim is to describe the costs associated with RESERVE-DSD.</p> <p>Discussion</p> <p>Our theory-based intervention, which uses simple, inexpensive recreational activities for delivering cognitive stimulation, is innovative because, to our knowledge it has not been tested as a treatment for DSD. This novel intervention for DSD builds on our prior delirium, recreational activity and cognitive stimulation research, and draws support from cognitive reserve theory.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01267682">NCT01267682</a></p

    Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE Project

    Get PDF
    Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among ≥5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% ≥5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in ≥5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≤26% across all ages) than pre-PCV (≥70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    Sex Determination:Why So Many Ways of Doing It?

    Get PDF
    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination
    corecore