193 research outputs found

    Common NOD2/CARD15 variants are not associated with susceptibility or the clinicopathologic characteristics of sporadic colorectal cancer in Hungarian patients

    Get PDF
    BACKGROUND: Epidemiological observations suggest that cancer arises from chronically inflamed tissues. Inflammatory bowel disease (IBD) is a typical example as patients with longstanding IBD are at an increased risk for developing colorectal cancer (CRC) and mutations of the NOD2/CARD15 gene increase the risk for Crohn's disease (CD). Recently, NOD2/CARD15 has been associated with a risk for CRC in some studies, which stemmed from ethnically diverse populations. Our aim was to identify common NOD2/CARD15 mutations in Hungarian patients with sporadic CRC. METHODS: A total of 194 sporadic CRC patients (m/f: 108/86, age at diagnosis of CRC: 63.2 ± 9.1 years old) and 200 healthy subjects were included. DNA was screened for SNP8, SNP12 and SNP13 NOD2/CARD15 mutations by denaturing-HPLC and confirmed by direct sequencing. RESULTS: NOD2/CARD15 mutations were found in 28 patients (14.4%) and in 23 controls (11.5%, p = NS). Allele frequencies for SNP8/R702W (1.8% vs. 1.5%) SNP12/G908R (1.8% vs. 1.8%) and SNP13/3020insC (3.6% vs. 2.5%) were also not statistically different between patients and controls. The clinicopathologic characteristics of CRC patients with or without NOD2/CARD15 mutations were not significantly different. CONCLUSION: Our results suggest that common NOD2/CARD15 mutations alone do not contribute to CRC risk in the Hungarian population

    Frequency of single nucleotide polymorphisms in NOD1 gene of ulcerative colitis patients: a case-control study in the Indian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies have provided enough evidence that genetic factors have an important role in determining susceptibility to IBD. The most significant finding in the IBD research has been identification of mutations in the gene that encodes Nod2 (nucleotide-binding oligomerization domain 2) protein in a subgroup of patients with Crohn's disease. However, a very similar gene encoding Nod1 protein still has not been well documented for its association with Ulcerative colitis patients. Detection of polymorphism in <it>NOD1 </it>gene using SNP analysis has been attempted in the present study. We evaluated frequency and significance of mutations present in the nucleotide-binding domain (NBD) of <it>NOD1 </it>gene in context to Indian population.</p> <p>Methods</p> <p>A total of 95 patients with ulcerative colitis and 102 controls enrolled in the Gastroenterology department of All India Institute of Medical Sciences, New Delhi were screened for SNPs by DHPLC and RFLP techniques. Exon 6 locus in the NBD domain of <it>NOD1 </it>gene was amplified and sequenced. Genotype and allele frequencies of the patients and controls were calculated by the Pearson's χ<sup>2 </sup>test, Fisher's exact test and ANOVA with Bonferroni's correction using SPSS software version 12.</p> <p>Results</p> <p>We have demonstrated DHPLC screening technique to show the presence of SNPs in Exon 6 locus of NBD domain of <it>NOD1 </it>gene. The DHPLC analysis has proven suitable for rapid detection of base pair changes. The data was validated by sequencing of clones and subsequently by RFLP analysis. Analyses of SNP data revealed 3 significant mutations (W219R, <it>p </it>= 0.002; L349P, <it>p </it>= 0.002 and L370R, <it>p </it>= 0.039) out of 5 in the Exon 6 locus of NBD domain of the gene that encompasses ATP and Mg<sup>2+</sup>binding sites. No significant association was observed within different sub phenotypes.</p> <p>Conclusion</p> <p>We propose that the location of mutations in the Exon 6 spanning the ATP and Mg<sup>2+ </sup>binding site of NBD in <it>NOD1 </it>gene may affect the process of oligomerization and subsequent function of the LRR domain. Further studies are been conducted at the protein level to prove this possibility.</p

    Decomposing Neural Synchrony: Toward an Explanation for Near-Zero Phase-Lag in Cortical Oscillatory Networks

    Get PDF
    Background: Synchronized oscillation in cortical networks has been suggested as a mechanism for diverse functions ranging from perceptual binding to memory formation to sensorimotor integration. Concomitant with synchronization is the occurrence of near-zero phase-lag often observed between network components. Recent theories have considered the importance of this phenomenon in establishing an effective communication framework among neuronal ensembles. Methodology/Principal Findings: Two factors, among possibly others, can be hypothesized to contribute to the near-zero phase-lag relationship: (1) positively correlated common input with no significant relative time delay and (2) bidirectional interaction. Thus far, no empirical test of these hypotheses has been possible for lack of means to tease apart the specific causes underlying the observed synchrony. In this work simulation examples were first used to illustrate the ideas. A quantitative method that decomposes the statistical interdependence between two cortical areas into a feed-forward, a feed-back and a common-input component was then introduced and applied to test the hypotheses on multichannel local field potential recordings from two behaving monkeys. Conclusion/Significance: The near-zero phase-lag phenomenon is important in the study of large-scale oscillatory networks. A rigorous mathematical theorem is used for the first time to empirically examine the factors that contribute to this phenomenon. Given the critical role that oscillatory activity is likely to play in the regulation of biological processes at al

    Ruptured appendiceal cystadenoma presenting as right inguinal hernia in a patient with left colon cancer: A case report and review of literature

    Get PDF
    BACKGROUND: Mucoceles resulting from cystadenomas of the appendix are uncommon. Although rare, rupture of the mucoceles can occur with or without causing any abdominal complaint. There are several reports associating colonic malignancy with cystadenomas of the appendix. Herein, we report an unusual and interesting case of right inguinal hernia associated with left colon cancer. CASE PRESENTATION: A case of ruptured mucocele resulting from cystadenoma of the appendix was presented as right inguinal hernia in a 70-year-old male. The patient underwent colonoscopy, x-ray, ultrasound and computed tomography. Localized pseudomyxoma peritonei associated with adenocarcinoma of the descending colon was diagnosed. The patient underwent segmental resection of the colon, appendectomy, debridement of pseudomyxoma and closure of the internal ring of right inguinal canal. He is free of symptoms in one year follow-up. CONCLUSION: Synchronous colon cancer may occur in patients with appendiceal mucoceles. In such patients, the colon should be investigated and colonoscopy can be performed meticulously in cases of ruptured mucoceles and localized pseudomyxoma peritonei. Surgical intervention is the current choice of management

    Inflammatory response gene polymorphisms and their relationship with colorectal cancer risk

    Get PDF
    <p>Abstract</p> <p>Backgroud</p> <p>Patients with chronic inflammatory bowel disease (IBD) are at an increased risk of colorectal cancer (CRC) and it is estimated that one in six persons diagnosed with IBD will develop CRC. This fact suggests that genetic variations in inflammatory response genes may act as CRC disease risk modifiers.</p> <p>Methods</p> <p>In order to test this hypothesis we investigated a series of polymorphisms in 6 genes (NOD2, DLG5, OCTN1, OCTN2, IL4, TNFα) associated with the inflammatory response on a group of 607 consecutive newly diagnosed colorectal cancer patients and compared the results to controls (350 consecutive newborns and 607 age, sex and geographically matched controls).</p> <p>Results</p> <p>Of the six genes only one polymorphism in TNFα(-1031T/T) showed any tendency to be associated with disease risk (64.9% for controls and 71.4% for CRC) which we further characterized on a larger cohort of CRC patients and found a more profound relationship between the TNFα -1031T/T genotype and disease (64.5% for controls vs 74.7% for CRC cases above 70 yrs). Then, we investigated this result and identified a suggestive tendency, linking the TNFα -1031T/T genotype and a previously identified change in the CARD15/NOD2 gene (OR = 1.87; p = 0,02 for CRC cases above 60 yrs).</p> <p>Conclusion</p> <p>The association of polymorphisms in genes involved in the inflammatory response and CRC onset suggest that there are genetic changes capable of influencing disease risk in older persons.</p

    Prevalence of inflammatory bowel disease among coeliac disease patients in a Hungarian coeliac centre

    Get PDF
    BACKGROUND: Celiac disease, Crohn disease and ulcerative colitis are inflammatory disorders of the gastrointestinal tract with some common genetic, immunological and environmental factors involved in their pathogenesis. Several research shown that patients with celiac disease have increased risk of developing inflammatory bowel disease when compared with that of the general population. The aim of this study is to determine the prevalence of inflammatory bowel disease in our celiac patient cohort over a 15-year-long study period. METHODS: To diagnose celiac disease, serological tests were used, and duodenal biopsy samples were taken to determine the degree of mucosal injury. To set up the diagnosis of inflammatory bowel disease, clinical parameters, imaging techniques, colonoscopy histology were applied. DEXA for measuring bone mineral density was performed on every patient. RESULTS: In our material, 8/245 (3,2 %) coeliac disease patients presented inflammatory bowel disease (four males, mean age 37, range 22-67), 6/8 Crohn's disease, and 2/8 ulcerative colitis. In 7/8 patients the diagnosis of coeliac disease was made first and inflammatory bowel disease was identified during follow-up. The average time period during the set-up of the two diagnosis was 10,7 years. Coeliac disease serology was positive in all cases. The distribution of histology results according to Marsh classification: 1/8 M1, 2/8 M2, 3/8 M3a, 2/8 M3b. The distribution according to the Montreal classification: 4/6 Crohn's disease patients are B1, 2/6 Crohn's disease patients are B2, 2/2 ulcerative colitis patients are S2. Normal bone mineral density was detected in 2/8 case, osteopenia in 4/8 and osteoporosis in 2/8 patients. CONCLUSIONS: Within our cohort of patients with coeliac disease, inflammatory bowel disease was significantly more common (3,2 %) than in the general population

    A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology.</p> <p>Methods</p> <p>The equation [<it>p </it>= 1 - (1 - (1 - (1 - <it>u</it>)<sup><it>d</it></sup>)<sup><it>k</it></sup>)<sup><it>Nm </it></sup>] calculates the probability of cancer (<it>p</it>) and contains five parameters: the number of divisions (<it>d</it>), the number of stem cells (<it>N </it>× <it>m</it>), the number of critical rate-limiting pathway driver mutations (<it>k</it>), and the mutation rate (<it>u</it>). In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell.</p> <p>Results</p> <p>When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk.</p> <p>Conclusions</p> <p>The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.</p
    corecore