2 research outputs found

    Asynchronous Testing of Synchronous Components in GALS Systems

    Get PDF
    International audienceGALS (Globally Asynchronous Locally Synchronous) systems, such as the Internet of Things or autonomous cars, integrate reactive synchronous components that interact asynchronously. The complexity induced by combining synchronous and asynchronous aspects makes GALS systems difficult to develop and debug. Ensuring their functional correctness and reliability requires rigorous design methodologies, based on formal methods and assisted by validation tools. In this paper we propose a testing methodology for GALS systems integrating: (1) synchronous and asynchronous concurrent models; (2) functional unit testing and behavioral conformance testing; and (3) various formal methods and their tool equipments. We leverage the conformance test generation for asynchronous systems to automatically derive realistic scenarios (input constraints and oracle), which are necessary ingredients for the unit testing of individual synchronous components, and are difficult and error-prone to design manually. We illustrate our approach on a simple, but relevant example inspired by autonomous cars

    Deterministic Concurrency: A Clock-Synchronised Shared Memory Approach

    Get PDF
    International audienceSynchronous Programming (SP) is a universal computational principle that provides deterministic concurrency. The same input sequence with the same timing always results in the same externally observable output sequence, even if the internal behaviour generates uncertainty in the scheduling of concurrent memory accesses. Consequently, SP languages have always been strongly founded on mathematical semantics that support formal program analysis. So far, however, communication has been constrained to a set of primitive clock-synchronised shared memory (csm) data types, such as data-flow registers, streams and signals with restricted read and write accesses that limit modularity and behavioural abstractions. This paper proposes an extension to the SP theory which retains the advantages of deterministic concurrency, but allows communication to occur at higher levels of abstraction than currently supported by SP data types. Our approach is as follows. To avoid data races, each csm type publishes a policy interface for specifying the admissibility and precedence of its access methods. Each instance of the csm type has to be policy-coherent, meaning it must behave deterministically under its own policy-a natural requirement if the goal is to build deterministic systems that use these types. In a policy-constructive system, all access methods can be scheduled in a policy-conformant way for all the types without deadlocking. In this paper, we show that a policy-constructive program exhibits deterministic concurrency in the sense that all policy-conformant interleavings produce the same input-output behaviour. Policies are conservative and support the csm types existing in current SP languages. Technically, we introduce a kernel SP language that uses arbitrary policy-driven csm types. A big-step fixed-point semantics for this language is developed for which we prove determinism and termination of constructive programs
    corecore