100 research outputs found

    Volumetric Magnetic Resonance Imaging Quantification of Longitudinal Brain Changes in Abstinent Alcoholics

    Full text link
    Magnetic resonance imaging (MRI) of the brain was performed on a group of 24 recently detoxified, male alcoholics approximately 1 month after their date of last drink. The imaging was repeated 3 months later, at which point 9 subjects had resumed drinking and 15 had maintained abstinence. Contrasts between these two drinking groups revealed that, despite comparable baseline values, the Abstainers exhibited volumetric white matter increases and cerebrospinal fluid reductions over the follow-up interval, whereas the Drinkers did not show significant change on either of these MRI indices. These results provide the first evidence suggestive of significant volumetric white matter increase with abstinence

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions

    Intractable epilepsies of the neocortex: basic mechanisms.

    No full text
    corecore