25 research outputs found

    In-Vivo Visualization of Tumor Microvessel Density and Response to Anti-Angiogenic Treatment by High Resolution MRI in Mice

    Get PDF
    Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice. Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size. Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects ha

    N-(4-iodophenyl)-N′-(2-chloroethyl)urea as a microtubule disrupter: in vitro and in vivo profiling of antitumoral activity on CT-26 murine colon carcinoma cell line cultured and grafted to mice

    Get PDF
    The antitumoral profile of the microtubule disrupter N-(4-iodophenyl)-N′-(2-chloroethyl)urea (ICEU) was characterised in vitro and in vivo using the CT-26 colon carcinoma cell line, on the basis of the drug uptake by the cells, the modifications of cell cycle, and β-tubulin and lipid membrane profiles. N-(4-iodophenyl)-N′-(2-chloroethyl)urea exhibited a rapid and dose-dependent uptake by CT-26 cells suggesting its passive diffusion through the membranes. Intraperitoneally injected ICEU biodistributed into the grafted CT-26 tumour, resulting thus in a significant tumour growth inhibition (TGI). N-(4-iodophenyl)-N′-(2-chloroethyl)urea was also observed to accumulate within colon tissue. Tumour growth inhibition was associated with a slight increase in the number of G2 tetraploid tumour cells in vivo, whereas G2 blockage was more obvious in vitro. The phenotype of β-tubulin alkylation that was clearly demonstrated in vitro was undetectable in vivo. Nuclear magnetic resonance analysis showed that cells blocked in G2 phase underwent apoptosis, as confirmed by an increase in the methylene group resonance of mobile lipids, parallel to sub-G1 accumulation of the cells. In vivo, a decrease of the signals of both the phospholipid precursors and the products of membrane degradation occurred concomitantly with TGI. This multi-analysis established, at least partly, the ICEU activity profile, in vitro and in vivo, providing additional data in favour of ICEU as a tubulin-interacting drug accumulating within the intestinal tract. This may provide a starting point for researches for future efficacious tubulin-interacting drugs for the treatment of colorectal cancers

    Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study

    Get PDF
    The goal of this study was to evaluate the time course of metabolic changes in leukaemia cells treated with the Bcr-Abl tyrosine kinase inhibitor imatinib. Human Bcr-Abl+ K562 cells were incubated with imatinib in a dose-escalating manner (starting at 0.1 μM with a weekly increase of 0.1 μM imatinib) for up to 5 weeks. Nuclear magnetic resonance spectroscopy and liquid-chromatography mass spectrometry were performed to assess a global metabolic profile, including glucose metabolism, energy state, lipid metabolism and drug uptake, after incubation with imatinib. Initially, imatinib treatment completely inhibited the activity of Bcr-Abl tyrosine kinase, followed by the inhibition of cell glycolytic activity and glucose uptake. This was accompanied by the increased mitochondrial activity and energy production. With escalating imatinib doses, the process of cell death rapidly progressed. Phosphocreatine and NAD+ concentrations began to decrease, and mitochondrial activity, as well as the glycolysis rate, was further reduced. Subsequently, the synthesis of lipids as necessary membrane precursors for apoptotic bodies was accelerated. The concentrations of the Kennedy pathway intermediates, phosphocholine and phosphatidylcholine, were reduced. After 4 weeks of exposure to imatinib, the secondary necrosis associated with decrease in the mitochondrial and glycolytic activity occurred and was followed by a shutdown of energy production and cell death. In conclusion, monitoring of metabolic changes in cells exposed to novel signal transduction modulators supplements molecular findings and provides further mechanistic insights into longitudinal changes of the mitochondrial and glycolytic pathways of oncogenesis
    corecore