142 research outputs found

    Monoclonal origin of B lymphocyte colony-forming cells in spleen colonies formed by multipotential hemopoietic stem cells

    Get PDF
    Spleen colonies produced by transplanting lethally irradiated mice with either 12 day fetal liver or adult bone marrow cells were found to contain B- lymphocyte colony-forming cells (BL-CFC) . The proportion of BL-CFC positive spleen colonies did not increase substantially between 8 and 14 days after transplantation, the range being 18-45 percent. However, the absolute number of BL-CFC per spleen colony varied considerably (between 1 and 10,318), although the majority of colonies contained less than 200 BL-CFC. Irrespective of the time after transplantation, smaller spleen colonies were found to have a higher frequency of BL-CFC than larger spleen colonies. To determine the possible clonal origin of BL-CFC from spleen colony- forming unit (CFU-S), CBA mice were injected with equal numbers of CBA and CBA T(6)/T(6) fetal liver or adult bone marrow cells. Analysis of 7-15-day spleen colonies demonstrated that 90 percent were either exclusively T(6) positive or T(6) negative and approximately equal numbers ofboth colony types were observed. B-lymphocyte colonies were grown and successfully karyotyped from 19 spleen colonies. When compared with the original spleen colony karyotype the B-lymphocyte colony cells karyotype was identical in all 19 cases. In 3 of the 19 colonies analyzed a mixture of T(6) positive and T(6) negative karyotypes was present and identical proportions of the karyotypes were present in the pooled B-lymphocyte colony cells and spleen colony cells. The data indicate that the B-lymphocyte colony-forming cells detected in spleen colonies are genuine members of the hemopoietic clone derived from the initiating hemopoietic stem cell (CFU-S)

    COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer

    Get PDF
    Increased expression of COX-2 or VEGF-C has been correlated with progressive disease in certain cancers. Present study utilized several human breast cancer cell lines (MCF-7, T-47D, Hs578T and MDA-MB-231, varying in COX-2 expression) as well as 10 human breast cancer specimens to examine the roles of COX-2 and prostaglandin E (EP) receptors in VEGF-C expression or secretion, and the relationship of COX-2 or VEGF-C expression to lymphangiogenesis. We found a strong correlation between COX-2 mRNA expression and VEGF-C expression or secretion levels in breast cancer cell lines and VEGF-C expression in breast cancer tissues. Expression of LYVE-1, a selective marker for lymphatic endothelium, was also positively correlated with COX-2 or VEGF-C expression in breast cancer tissues. Inhibition of VEGF-C expression and secretion in the presence of COX-1/2 or COX-2 inhibitors or following downregulation of COX-2 with COX-2 siRNA established a stimulatory role COX-2 in VEGF-C synthesis by breast cancer cells. EP1 as well as EP4 receptor antagonists inhibited VEGF-C production indicating the roles of EP1 and EP4 in VEGF-C upregulation by endogenous PGE2. Finally, VEGF-C secretion by MDA-MB-231 cells was inhibited in the presence of kinase inhibitors for Her-2/neu, Src and p38 MAPK, indicating a requirement of these kinases for VEGF-C synthesis. These results, for the first time, demonstrate a regulatory role of COX-2 in VEGF-C synthesis (and thereby lymphangiogenesis) in human breast cancer, which is mediated at least in part by EP1/EP4 receptors

    Applications of Site-Specific Labeling to Study HAMLET, a Tumoricidal Complex of α-Lactalbumin and Oleic Acid

    Get PDF
    umor cells), and its tumoricidal activity has been well established.-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules.We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity

    Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion

    Get PDF
    The present study investigates the role of nitric oxide and the involvement of nitric oxide synthase II isoform on the invasion of human colorectal adenocarcinoma cell lines HRT-18 and HT-29. HRT-18 cells, which constitutively express nitric oxide synthase II mRNA were three-fold more invasive in a Matrigel® invasion assay than nitric oxide synthase II mRNA negative HT-29 cells. Treatment of HT-29 cells with the nitric oxide donor Deta NONOate (50 nM) as well as induction of nitric oxide synthase II mRNA and production of endogenous nitric oxide by inflammatory cytokines (IFN-γ and IL-1α) increased the invasiveness of HT-29 cells by approximately 40% and 75%, respectively. In HT-29 cells nitric oxide synthase II mRNA was also induced in co-culture with human monocytes. The invasiveness of HRT-18 cells and stimulated HT-29 cells was partly inhibited by the nitric oxide synthase II inhibitor 1400 W. These results show that nitric oxide increases the invasion of human colorectal adenocarcinoma cell lines HRT-18 and HT-29, and the involvement of nitric oxide synthase II isoform in tumour cell invasion. Therefore, the production of nitric oxide and secretion of pro-inflammatory cytokines by tumour-associated macrophages, which in turn induce nitric oxide synthase II isoform in tumour cells, promotes tumour cell invasiveness

    Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells

    Get PDF
    Vascular endothelial growth factor C (VEGF-C) is a lymphangiogenic factor over-expressed in highly metastatic, cyclooxygenase (COX)-2 expressing breast cancer cells. We tested the hypothesis that tumour-derived VEGF-C may play an autocrine role in metastasis by promoting cellular motility through one or more VEGF-C-binding receptors VEGFR-2, VEGFR-3, neuropilin (NRP)-1, NRP-2, and integrin α9β1. We investigated the expression of these receptors in several breast cancer cell lines (MDA-MB-231, Hs578T, SK-BR-3, T-47D, and MCF7) and their possible requirement in migration of two VEGF-C-secreting, highly metastatic lines MDA-MB-231 and Hs578T. While cell lines varied significantly in their expression of above VEGF-C receptors, migratory activity of MDA-MB-231 and Hs578T cells was linked to one or more of these receptors. Depletion of endogenous VEGF-C by treatments with a neutralising antibody, VEGF-C siRNA or inhibitors of Src, EGFR/Her2/neu and p38 MAP kinases which inhibited VEGF-C production, inhibited cellular migration, indicating the requirement of VEGF-C for migratory function. Migration was differentially attenuated by blocking or downregulation of different VEGF-C receptors, for example treatment with a VEGFR-2 tyrosine kinase inhibitor, NRP-1 and NRP-2 siRNA or α9β1 integrin antibody, indicating the participation of one or more of the receptors in cell motility. This novel role of tumour-derived VEGF-C indicates that breast cancer metastasis can be promoted by coordinated stimulation of lymphangiogenesis and enhanced migratory activity of breast cancer cells

    Nitric Oxide (NO) and Cyclooxygenase-2 (COX-2) Cross-Talk in Co-Cultures of Tumor Spheroids with Normal Cells

    Get PDF
    Cyclooxygenases (COX), prostaglandin E2 (PGE2) and nitric oxide (NO) are believed to be some of the most important factors related to colon cancer growth and metastasis. In this study, we aimed to investigate the associations between COX-2, PGE2 and NO in co-cultures of human colon cancer spheroids obtained from different tumor grades with normal human colonic epithelium and myofibroblast monolayers. L-arginine (2 mM), a substrate for nitric oxide synthases (NOS), decreased COX-2 and PGE2 levels, while NG-nitro-L-arginine methyl ester (L-NAME) (2 mM), a NOS inhibitor, had no influence on COX-2 and PGE2 levels but limited tumor cell motility. NS398 (75 μM), a selective COX-2 inhibitor, had no significant influence on NO level but decreased motility of tumor cells. COX-2, PGE2 and NO levels depended on the tumor grade of the cells, being the highest in Duke’s stage III colon carcinoma. Summing up, we showed that addition of L-arginine at doses which did not stimulate NO level caused a significant decrease in COX-2 and PGE2 amounts in co-cultures of colon tumor spheroids with normal epithelial cells and myofibroblasts. Any imbalances in NO level caused by exogenous factors influence COX-2 and PGE2 amounts depending on the kind of cells, their reciprocal interactions and the local microenvironmental conditions. The knowledge of these effects may be useful in limiting colon carcinoma progression and invasion
    corecore