19 research outputs found

    Dendrite growth in undercooled Al-rich Al-Ni melts measured on Earth and in Space

    Get PDF
    The dendrite growth velocity in Al₇₅Ni₂₅ melts has been measured in a containerless procedure as a function of undercooling using an electromagnetic levitation technique both in the Earth laboratory and in Space on board the International Space Station. The growth shows an anomalous behavior inasmuch as the growth velocity decreases with increasing undercooling, confirming previous experiments on Earth. Within the scatter of experimental data, results obtained on Earth and in Space do not show significant differences. Thus, convection effects as the origin of the anomalous growth characteristics can be excluded. However, high-speed video recording exhibits multiple nucleation events in front of the growing solid-liquid interface. This effect is identified as the origin of the anomalous dendrite growth characteristics in undercooled melts of Al-rich Al-Ni melts

    Simulation of Intermetallic Solidification using Phase-Field Techniques

    Get PDF
    We present current ideas towards developing a phase-field model appropriate to the solidification of intermetallic phases. Such simulation presents two main challenges (i) dealing with faceted interfaces and (ii) the complex sub-lattice models used to describe the thermodynamics of such phases. Although models are already existent for the simulation of faceted crystals, some of these can be shown to produce highly unrealistic Wulff shapes. The model present here uses a parameterization of the Wulff shape as a direct input to the model, allowing the simulation of arbitrary crystal shapes. In addition, an anti-trapping current that can be used with arbitrary (including sub-lattice) thermodynamics is presented. Such antitrapping currents are vital in the simulation of intermetallic phases where the steep liquidus slope means small deviations in solute partitioning behaviour can translate to a significant change in tip undercooling

    Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Materials Science. The final authenticated version is available online at: https://doi.org/10.1007/s10853-017-0853-8A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed model can be made quantitative for Ag-Cu. Next, we explore the effect of material properties, and the conditions of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free energies (solid-liquid and solid-solid), the crystal misorientation relative to pulling, the lateral temperature gradient, play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two solid phases are drastically different
    corecore