387 research outputs found

    Relationship of cognitive function in patients with schizophrenia in remission to disability: a cross-sectional study in an Indian sample

    Get PDF
    Background: Cognitive deficits in various domains have been consistently replicated in patients with schizophrenia. Most studies looking at the relationship between cognitive dysfunction and functional disability are from developed countries. Studies from developing countries are few. The purpose of the present study was to compare the neurocognitive function in patients with schizophrenia who were in remission with that of normal controls and to determine if there is a relationship between measures of cognition and functional disability. <p/>Methods: This study was conducted in the Psychiatric Unit of a General Hospital in Mumbai, India. Cognitive function in 25 patients with schizophrenia in remission was compared to 25 normal controls. Remission was confirmed using the brief psychiatric rating scale (BPRS) and scale for the assessment of negative symptoms (SANS). Subjects were administered a battery of cognitive tests covering aspects of memory, executive function and attention. The results obtained were compared between the groups. Correlation analysis was used to look for relationship between illness factors, cognitive function and disability measured using the Indian disability evaluation and assessment scale. <p/>Results: Patients with schizophrenia showed significant deficits on tests of attention, concentration, verbal and visual memory and tests of frontal lobe/executive function. They fared worse on almost all the tests administered compared to normal controls. No relationship was found between age, duration of illness, number of years of education and cognitive function. In addition, we did not find a statistically significant relationship between cognitive function and scores on the disability scale. <p/>Conclusion: The data suggests that persistent cognitive deficits are seen in patients with schizophrenia under remission. The cognitive deficits were not associated with symptomatology and functional disability. It is possible that various factors such as employment and family support reduce disability due to schizophrenia in developing countries like India. Further studies from developing countries are required to explore the relationship between cognitive deficits, functional outcome and the role of socio-cultural variables as protective factors

    Comparative effectiveness of BNT162b2 versus mRNA-1273 covid-19 vaccine boosting in England: matched cohort study in OpenSAFELY-TPP

    Get PDF
    Objective To compare the effectiveness of the BNT162b2 mRNA (Pfizer-BioNTech) and mRNA-1273 (Moderna) covid-19 vaccines during the booster programme in England. Design Matched cohort study, emulating a comparative effectiveness trial. Setting Linked primary care, hospital, and covid-19 surveillance records available within the OpenSAFELY-TPP research platform, covering a period when the SARS-CoV-2 delta and omicron variants were dominant. Participants 3 237 918 adults who received a booster dose of either vaccine between 29 October 2021 and 25 February 2022 as part of the national booster programme in England and who received a primary course of BNT162b2 or ChAdOx1. Intervention Vaccination with either BNT162b2 or mRNA-1273 as a booster vaccine dose. Main outcome measures Recorded SARS-CoV-2 positive test, covid-19 related hospital admission, covid-19 related death, and non-covid-19 related death at 20 weeks after receipt of the booster dose. Results 1 618 959 people were matched in each vaccine group, contributing a total 64 546 391 person weeks of follow-up. The 20 week risks per 1000 for a positive SARS-CoV-2 test were 164.2 (95% confidence interval 163.3 to 165.1) for BNT162b2 and 159.9 (159.0 to 160.8) for mRNA-1273; the hazard ratio comparing mRNA-1273 with BNT162b2 was 0.95 (95% confidence interval 0.95 to 0.96). The 20 week risks per 1000 for hospital admission with covid-19 were 0.75 (0.71 to 0.79) for BNT162b2 and 0.65 (0.61 to 0.69) for mRNA-1273; the hazard ratio was 0.89 (0.82 to 0.95). Covid-19 related deaths were rare: the 20 week risks per 1000 were 0.028 (0.021 to 0.037) for BNT162b2 and 0.024 (0.018 to 0.033) for mRNA-1273; hazard ratio 0.83 (0.58 to 1.19). Comparative effectiveness was generally similar within subgroups defined by the primary course vaccine brand, age, previous SARS-CoV-2 infection, and clinical vulnerability. Relative benefit was similar when vaccines were compared separately in the delta and omicron variant eras. Conclusions This matched observational study of adults estimated a modest benefit of booster vaccination with mRNA-1273 compared with BNT162b2 in preventing positive SARS-CoV-2 tests and hospital admission with covid-19 20 weeks after vaccination, during a period of delta followed by omicron variant dominance

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Needle Electrode-Based Electromechanical Reshaping of Cartilage

    Get PDF
    Electromechanical reshaping (EMR) of cartilage provides an alternative to the classic surgical techniques of modifying the shape of facial cartilages. The original embodiment of EMR required surface electrodes to be in direct contact with the entire cartilage region being reshaped. This study evaluates the feasibility of using needle electrode systems for EMR of facial cartilage and evaluates the relationships between electrode configuration, voltage, and application time in effecting shape change. Flat rabbit nasal septal cartilage specimens were deformed by a jig into a 90° bend, while a constant electric voltage was applied to needle electrodes that were inserted into the cartilage. The electrode configuration, voltage (0–7.5 V), and application time (1–9 min) were varied systematically to create the most effective shape change. Electric current and temperature were measured during voltage application, and the resulting specimen shape was assessed in terms of retained bend angle. In order to demonstrate the clinical feasibility of EMR, the most effective and practical settings from the septal cartilage experimentation were used to reshape intact rabbit and pig ears ex vivo. Cell viability of the cartilage after EMR was determined using confocal microscopy in conjunction with a live/dead assay. Overall, cartilage reshaping increased with increased voltage and increased application time. For all electrode configurations and application times tested, heat generation was negligible (<1 °C) up to 6 V. At 6 V, with the most effective electrode configuration, the bend angle began to significantly increase after 2 min of application time and began to plateau above 5 min. As a function of voltage at 2 min of application time, significant reshaping occurred at and above 5 V, with no significant increase in the bend angle between 6 and 7.5 V. In conclusion, electromechanical reshaping of cartilage grafts and intact ears can be effectively performed with negligible temperature elevation and spatially limited cell injury using needle electrodes

    Ethnic differences in the indirect effects of the COVID-19 pandemic on clinical monitoring and hospitalisations for non-COVID conditions in England: a population-based, observational cohort study using the OpenSAFELY platform

    Get PDF
    Background: The COVID-19 pandemic disrupted healthcare and may have impacted ethnic inequalities in healthcare. We aimed to describe the impact of pandemic-related disruption on ethnic differences in clinical monitoring and hospital admissions for non-COVID conditions in England. // Methods: In this population-based, observational cohort study we used primary care electronic health record data with linkage to hospital episode statistics data and mortality data within OpenSAFELY, a data analytics platform created, with approval of NHS England, to address urgent COVID-19 research questions. We included adults aged 18 years and over registered with a TPP practice between March 1, 2018, and April 30, 2022. We excluded those with missing age, sex, geographic region, or Index of Multiple Deprivation. We grouped ethnicity (exposure), into five categories: White, Asian, Black, Other, and Mixed. We used interrupted time-series regression to estimate ethnic differences in clinical monitoring frequency (blood pressure and Hba1c measurements, chronic obstructive pulmonary disease and asthma annual reviews) before and after March 23, 2020. We used multivariable Cox regression to quantify ethnic differences in hospitalisations related to diabetes, cardiovascular disease, respiratory disease, and mental health before and after March 23, 2020. // Findings: Of 33,510,937 registered with a GP as of 1st January 2020, 19,064,019 were adults, alive and registered for at least 3 months, 3,010,751 met the exclusion criteria and 1,122,912 were missing ethnicity. This resulted in 14,930,356 adults with known ethnicity (92% of sample): 86.6% were White, 7.3% Asian, 2.6% Black, 1.4% Mixed ethnicity, and 2.2% Other ethnicities. Clinical monitoring did not return to pre-pandemic levels for any ethnic group. Ethnic differences were apparent pre-pandemic, except for diabetes monitoring, and remained unchanged, except for blood pressure monitoring in those with mental health conditions where differences narrowed during the pandemic. For those of Black ethnicity, there were seven additional admissions for diabetic ketoacidosis per month during the pandemic, and relative ethnic differences narrowed during the pandemic compared to the White ethnic group (Pre-pandemic hazard ratio (HR): 0.50, 95% confidence interval (CI) 0.41, 0.60, Pandemic HR: 0.75, 95% CI: 0.65, 0.87). There was increased admissions for heart failure during the pandemic for all ethnic groups, though highest in those of White ethnicity (heart failure risk difference: 5.4). Relatively, ethnic differences narrowed for heart failure admission in those of Asian (Pre-pandemic HR 1.56, 95% CI 1.49, 1.64, Pandemic HR 1.24, 95% CI 1.19, 1.29) and Black ethnicity (Pre-pandemic HR 1.41, 95% CI: 1.30, 1.53, Pandemic HR: 1.16, 95% CI 1.09, 1.25) compared with White ethnicity. For other outcomes the pandemic had minimal impact on ethnic differences. // Interpretation: Our study suggests that ethnic differences in clinical monitoring and hospitalisations remained largely unchanged during the pandemic for most conditions. Key exceptions were hospitalisations for diabetic ketoacidosis and heart failure, which warrant further investigation to understand the causes

    Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of <it>Hsp70 </it>gene copy number modification on thermotolerance and the expression of multiple stress-response genes in <it>Drosophila melanogaster</it>, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70.</p> <p>Results</p> <p><it>Hsp70 </it>copy number in four strains is positively associated with <it>Hsp70 </it>expression and inducible thermotolerance of severe heat shock. When assayed at carefully chosen temperatures, <it>Hsp70 </it>null flies are almost entirely deficient in thermotolerance. In contrast to expectations, increasing <it>Hsp70 </it>expression levels induced by thermal pretreatment are associated with increasing levels of seven other inducible <it>Hsps </it>across strains. In addition, complete <it>Hsp70 </it>loss causes upregulation of the inducible <it>Hsps </it>and six constitutive stress-response genes following severe heat shocks.</p> <p>Conclusion</p> <p>Modification of <it>Hsp70 </it>copy number quantitatively and qualitatively affects the expression of multiple other stress-response genes. A positive association between absolute expression levels of <it>Hsp70 </it>and other <it>Hsps </it>after thermal pretreatment suggests novel regulatory mechanisms. Severe heat shocks induce both novel gene expression patterns and almost total mortality in the <it>Hsp70 </it>null strain: alteration of gene expression in this strain does not compensate for <it>Hsp70 </it>loss but suggests candidates for overexpression studies.</p

    Diffusion of Protease into Meat & Bone Meal for Solubility Improvement and Potential Inactivation of the BSE Prion

    Get PDF
    BACKGROUND: Government-imposed feed bans have created a need for new applications for meat & bone meal (MBM). Many potential new applications require MBM protein to be both soluble and free of infectious prion. Treatment with protease is generally effective in reducing insoluble, thermally-denatured proteins to soluble peptides. It has been reported in the literature that certain proteases, including Versazyme™, are able to degrade infectious prions in a system where the prions are readily accessible to proteolytic attack. Prions distributed within MBM, however, may conceivably be protected from proteases. METHODOLOGY/PRINCIPAL FINDINGS: The overall rate of proteolytic MBM digestion depends greatly on whether the protease can penetrate deep within individual particles, or if the protease can only act near the surface of the particle. This research examined the barriers to the diffusion of Versazyme™ into particles of MBM. Confocal microscopy demonstrated differences in the density distributions between the bone and the soft tissue particles of MBM. By tracking the diffusion of fluorescently labeled Versazyme™ through individual particles, it was found that bone particles show full Versazyme™ penetration within 30 minutes, while penetration of soft tissue particles can take up to four hours, depending on the particle's diameter. From the variety of normal proteins comprising MBM, a specific protein was chosen to serve as a prion surrogate based on characteristics including size, solubility, distribution and abundance. This surrogate was used to measure the effect of several factors on Versazyme™ diffusion. CONCLUSIONS/SIGNIFICANCE: Results showed that surrogate distributed in bone particles was more susceptible to degradation than that in soft tissue particles. Three factors controllable by unit operations in an industrial-scale process were also tested. It was found that removing the lipid content and hydrating MBM prior to incubation both significantly increased the rate of surrogate degradation. In a test of particle size, the smallest collected diameter range demonstrated the largest degradation of the prion surrogate, suggesting milling would be beneficial

    Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose.</p> <p>Methods</p> <p>One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population.</p> <p>Results</p> <p>Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters.</p> <p>Conclusions</p> <p>A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.</p

    Fungal volatile organic compounds: emphasis on their plant growth-promoting

    Get PDF
    Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare

    Synthesis and Investigation of a Radioiodinated F3 Peptide Analog as a SPECT Tumor Imaging Radioligand

    Get PDF
    A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[125I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [125I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C5 maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C2 maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [125I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [125I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [125I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques
    corecore