152 research outputs found

    Entropic uncertainty relations and their applications

    Full text link
    © 2017 American Physical Society. Heisenberg's uncertainty principle forms a fundamental element of quantum mechanics. Uncertainty relations in terms of entropies were initially proposed to deal with conceptual shortcomings in the original formulation of the uncertainty principle and, hence, play an important role in quantum foundations. More recently, entropic uncertainty relations have emerged as the central ingredient in the security analysis of almost all quantum cryptographic protocols, such as quantum key distribution and two-party quantum cryptography. This review surveys entropic uncertainty relations that capture Heisenberg's idea that the results of incompatible measurements are impossible to predict, covering both finite- and infinite-dimensional measurements. These ideas are then extended to incorporate quantum correlations between the observed object and its environment, allowing for a variety of recent, more general formulations of the uncertainty principle. Finally, various applications are discussed, ranging from entanglement witnessing to wave-particle duality to quantum cryptography

    Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes.</p> <p>Methods</p> <p>A simple behavioural assays was developed to study visual and olfactory associative learning in <it>Anopheles gambiae</it>, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding.</p> <p>Results</p> <p>Under such experimental conditions <it>An. gambiae </it>females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success.</p> <p>Conclusions</p> <p>The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for <it>An. gambiae</it>'s host finding and blood-feeding behaviour with important potential implications for vector control.</p

    Mutation analysis of "Endoglin" and "Activin receptor-like kinase" genes in German patients with hereditary hemorrhagic telangiectasia and the value of rapid genotyping using an allele-specific PCR-technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, is an autosomal dominant disorder which is clinically characterised by recurrent epistaxis, mucocutaneous telangiectasia and visceral arteriovenous malformations. Genetic linkage studies identified two genes primarily related to HHT: endoglin (<it>ENG</it>) on chromosome 9q33-34 and activin receptor-like kinase1 (<it>ACVRL1</it>) on chromosome 12q13. We have screened a total of 41 unselected German patients with the suspected diagnosis of HHT. Mutation analysis for the <it>ENG </it>and <it>ACVRL1 </it>genes in all patients was performed by PCR amplification. Sequences were then compared to the HHT database <url>http://www.hhtmutation.org</url> sequences of the <it>ENG </it>mRNA (accession no. BC014271.2) and the <it>ACVRL1 </it>mRNA (accession no. NM000020.1).</p> <p>Results</p> <p>We identified 15 different mutations in 18 cases by direct sequencing. Among these mutations, one novel <it>ENG </it>mutation could be detected which has not yet been described in the literature before. The genotype-phenotype correlation was consistent with a higher frequency of pulmonary arteriovenous malformations in patients with <it>ENG </it>mutations than in patients with <it>ACVRL1 </it>mutations in our collective.</p> <p>Conclusion</p> <p>For rapid genotyping of mutations and SNPs (single nucleotide polymorphisms) in <it>ENG </it>and <it>ACVRL1</it>, allele-specific PCR methods with sequence-specific primers (PCR-SSP) were established and their value analysed.</p

    Translation without eIF2 Promoted by Poliovirus 2A Protease

    Get PDF
    Poliovirus RNA utilizes eIF2 for the initiation of translation in cell free systems. Remarkably, we now describe that poliovirus translation takes place at late times of infection when eIF2 is inactivated by phosphorylation. By contrast, translation directed by poliovirus RNA is blocked when eIF2 is inactivated at earlier times. Thus, poliovirus RNA translation exhibits a dual mechanism for the initiation of protein synthesis as regards to the requirement for eIF2. Analysis of individual poliovirus non-structural proteins indicates that the presence of 2Apro alone is sufficient to provide eIF2 independence for IRES-driven translation. This effect is not observed with a 2Apro variant unable to cleave eIF4G. The level of 2Apro synthesized in culture cells is crucial for obtaining eIF2 independence. Expression of the N-or C-terminus fragments of eIF4G did not stimulate IRES-driven translation, nor provide eIF2 independence, consistent with the idea that the presence of 2Apro at high concentrations is necessary. The finding that 2Apro provides eIF2-independent translation opens a new and unsuspected area of research in the field of picornavirus protein synthesis

    Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence?

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) are crucial to plants and vice versa, but little is known about the factors linking the community structure of the two groups. We investigated the association between AMF and the plant community structure in the nearest neighborhood of Festuca brevipila in a semiarid grassland with steep environmental gradients, using high-throughput sequencing of the Glomeromycotina (former Glomeromycota). We focused on the Passenger, Driver and Habitat hypotheses: (i) plant communities drive AMF (passenger); (ii) AMF communities drive the plants (driver); (iii) the environment shapes both communities causing covariation. The null hypothesis is that the two assemblages are independent and this study offers a spatially explicit novel test of it in the field at multiple, small scales. The AMF community consisted of 71 operational taxonomic units, the plant community of 47 species. Spatial distance and spatial variation in the environment were the main determinants of the AMF community. The structure of the plant community around the focal plant was a poor predictor of AMF communities, also in terms of phylogenetic community structure. Some evidence supports the passenger hypothesis, but the relative roles of the factors structuring the two groups clearly differed, leading to an apparent decoupling of the two assemblages at the relatively small scale of this study. Community phylogenetic structure in AMF suggests an important role of within-assemblage interactions

    NOF1 Encodes an Arabidopsis Protein Involved in the Control of rRNA Expression

    Get PDF
    The control of ribosomal RNA biogenesis is essential for the regulation of protein synthesis in eukaryotic cells. Here, we report the characterization of NOF1 that encodes a putative nucleolar protein involved in the control of rRNA expression in Arabidopsis. The gene has been isolated by T-DNA tagging and its function verified by the characterization of a second allele and genetic complementation of the mutants. The nof1 mutants are affected in female gametogenesis and embryo development. This result is consistent with the detection of NOF1 mRNA in all tissues throughout plant life's cycle, and preferentially in differentiating cells. Interestingly, the closely related proteins from zebra fish and yeast are also necessary for cell division and differentiation. We showed that the nof1-1 mutant displays higher rRNA expression and hypomethylation of rRNA promoter. Taken together, the results presented here demonstrated that NOF1 is an Arabidopsis gene involved in the control of rRNA expression, and suggested that it encodes a putative nucleolar protein, the function of which may be conserved in eukaryotes

    Skin Cancer:Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches

    Get PDF
    Skin cancer, including both melanoma and non-melanoma, is the most common type of malignancy in the Caucasian population. Firstly, we review the evidence for the observed increase in the incidence of skin cancer over recent decades, and investigate whether this is a true increase or an artefact of greater screening and over-diagnosis. Prevention strategies are also discussed. Secondly, we discuss the complexities and challenges encountered when diagnosing and developing treatment strategies for skin cancer. Key case studies are presented that highlight the practic challenges of choosing the most appropriate treatment for patients with skin cancer. Thirdly, we consider the potential risks and benefits of increased sun exposure. However, this is discussed in terms of the possibility that the avoidance of sun exposure in order to reduce the risk of skin cancer may be less important than the reduction in all-cause mortality as a result of the potential benefits of increased exposure to the sun. Finally, we consider common questions on human papillomavirus infection

    Effects of Alcohol on the Acquisition and Expression of Fear Potentiated Startle in Mouse Lines Selectively Bred for High and Low Alcohol Preference

    Get PDF
    Rationale: Anxiety disorders and alcohol-use disorders frequently co-occur in humans perhaps because alcohol relieves anxiety. Studies in humans and rats indicate that alcohol may have greater anxiolytic effects in organisms with increased genetic propensity for high alcohol consumption. Objectives and Methods: The purpose of this study was to investigate the effects of moderate doses of alcohol (0.5, 1.0, 1.5 g/kg) on the acquisition and expression of anxiety-related behavior using a fear-potentiated startle (FPS) procedure. Experiments were conducted in two replicate pairs of mouse lines selectively bred for high- (HAP1 and HAP2) and low- (LAP1 and LAP2) alcohol preference; these lines have previously shown a genetic correlation between alcohol preference and FPS (HAP\u3eLAP; Barrenha and Chester 2007). In a control experiment, the effect of diazepam (4.0 mg/kg) on the expression of FPS was tested in HAP2 and LAP2 mice. Results: The 1.5 g/kg alcohol dose moderately decreased the expression of FPS in both HAP lines but not LAP lines. Alcohol had no effect on the acquisition of FPS in any line. Diazepam reduced FPS to a similar extent in both HAP2 and LAP2 mice. Conclusions: HAP mice may be more sensitive to the anxiolytic effects of alcohol than LAP mice when alcohol is given prior to the expression of FPS. These data collected in two pairs of HAP/LAP mouse lines suggest that the anxiolytic response to alcohol in HAP mice may be genetically correlated with their propensity toward high alcohol preference and robust FPS

    Two Distinct Modes of Hypoosmotic Medium-Induced Release of Excitatory Amino Acids and Taurine in the Rat Brain In Vivo

    Get PDF
    A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo
    • …
    corecore