39 research outputs found

    Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2)

    Get PDF
    BACKGROUND: The purpose of the present study was to continue the investigation of the membrane transport mechanisms of 20-(S)-camptothecin (CPT) in order to understand the possible role of membrane transporters on its oral bioavailability and disposition. METHODS: The intestinal transport kinetics of CPT were characterized using Caco-2 cells, MDCKII wild-type cells and MDCKII cells transfected with human P-glycoprotein (PGP) (ABCB1) or human multidrug resistance protein 2 (MRP2) (ABCC2). The effects of drug concentration, inhibitors and temperature on CPT directional permeability were determined. RESULTS: The absorptive (apical to basolateral) and secretory (basolateral to apical) permeabilities of CPT were found to be saturable. Reduced secretory CPT permeabilities with decreasing temperatures suggests the involvement of an active, transporter-mediated secretory pathway. In the presence of etoposide, the CPT secretory permeability decreased 25.6%. However, inhibition was greater in the presence of PGP and of the breast cancer resistant protein inhibitor, GF120918 (52.5%). The involvement of additional secretory transporters was suggested since the basolateral to apical permeability of CPT was not further reduced in the presence of increasing concentrations of GF120918. To investigate the involvement of specific apically-located secretory membrane transporters, CPT transport studies were conducted using MDCKII/PGP cells and MDCKII/MRP2 cells. CPT carrier-mediated permeability was approximately twofold greater in MDCKII/PGP cells and MDCKII/MRP2 cells than in MDCKII/wild-type cells, while the apparent K(m )values were comparable in all three cell lines. The efflux ratio of CPT in MDCKII/PGP in the presence of 0.2 μM GF120918 was not completely reversed (3.36 to 1.49). However, the decrease in the efflux ratio of CPT in MDCKII/MRP2 cells (2.31 to 1.03) suggests that CPT efflux was completely inhibited by MK571, a potent inhibitor of the Multidrug Resistance Protein transporter family. CONCLUSIONS: The current results provide evidence that PGP and MRP2 mediate the secretory transport of CPT in vitro. However, the involvement of other transporters cannot be ruled out based on these studies. Since these transporters are expressed in the intestine, liver and kidney variations in their expression levels and/or regulation may be responsible for the erratic oral absorption and biliary excretion of CPT observed in human subjects

    Adaptive intrapatient dose escalation of cisplatin in combination with low-dose vp16 in patients with nonsmall cell lung cancer

    Get PDF
    The objective of this phase II and pharmacologic study was to explore the feasibility toxicity and activity of adaptive intrapatient dose escalation of cisplatin in a dose-intensive weekly schedule using predefined levels of exposure, with the ultimate aim to improve the antitumour activity of the therapy in patients with nonsmall cell lung cancer (NSCLC). Platinum DNA-adduct levels in peripheral white blood cells during treatment were used as the primary parameter for adaptive dosing. If DNA-adduct levels were not available, the area under the concentration-time curve (AUC) of unbound platinum in plasma was used for dose adaptation. Target levels for DNA-adducts and AUC have been defined in a previously performed pharmacologic study. The feasibility of adaptive dosing was tested in 76 patients with stage IIIB and IV NSCLC, who were planned to receive 6 weekly courses of cisplatin at a starting dose of 70 mg m-2, together with daily low oral dose of 50 mg VP16. In total, 37 patients (49%) who were given more than one course received a dose increase varying from 10 to 55%. The majority of patients reached the defined target levels by a dose increase during course two. Relevant grade 2 neurotoxicity was observed in eight (10%) patients and reversible ototoxicity grade 2 in 14 (18%) patients. The strategy of adaptive intrapatient dose adjustment of cisplatin is practically feasible in a research setting even when results for dose adaptation have to be reported within a short time-period of I week. The toxicity appeared to be manageable in this cohort of patients. In some patients, exposure after the standard dose was substantially lower than the defined target level and significant dose escalations of more than 50% had to be applied. The response rate (RR) was relatively high: overall 40% (29 out of 72 patients) partial remission (PR), in patients with stage IIIB the RR was 60% (15 out of 25 patients) and with stage IV 30% (14 out of 47 patients). Randomised studies are needed to determine whether the adaptive dosing strategy results in better efficacy than standard dosing

    Phase I pharmacokinetic and pharmacodynamic study of the prenyl transferase inhibitor AZD3409 in patients with advanced cancer

    Get PDF
    AZD3409 is an orally active double prodrug that was developed as a novel dual prenyltransferase inhibitor. The formation of the active metabolite AZD3409 acid is mediated by esterases in plasma and cells. The aim of this phase I study was to determine the maximum tolerated dose, toxicities, pharmacokinetics and pharmacodynamics of AZD3409. AZD3409 was administered orally to patients with advanced solid malignancies using an interpatient dose-escalation scheme starting at 500 mg AZD3409 once daily. Twenty-nine patients were treated at seven dose levels. The MTD of part A was defined as 750 mg b.i.d. in the fasted state. Adverse events were mainly gastrointestinal and the severity was on average mild to moderate and reversible. The dose-limiting toxicities were vomiting, diarrhoea and uncontrolled nausea. Pharmacokinetic studies of the prodrug and the active metabolite indicated dose proportionality. Pharmacodynamic studies showed that farnesyltransferase (FTase) was inhibited at all dose levels. In conclusion, chronic oral dosing with AZD3409 is feasible and results in significant inhibition of FTase activity. Pharmacodynamic studies revealed that the maximal FTase inhibition, estimated at 49±11%, appeared to be reached at AZD3409 acid plasma concentrations at which the occurrence of drug-related toxicity was low. This study supports the rationale to implement biological effect studies in clinical trials with biologically active anticancer drugs to define optimal dosing regimens

    Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor

    Get PDF
    Contains fulltext : 69595.pdf (publisher's version ) (Closed access)PURPOSE: In this study, the formation of cisplatin-DNA adducts after concurrent cisplatin-radiation and the relationship between adduct-formation in primary tumor tissue and normal tissue were investigated. METHODS: Three intravenous cisplatin-regimens, given concurrently with radiation, were studied: daily low-dose (6 mg/m(2)) cisplatin, weekly 40 mg/m(2), three-weekly 100 mg/m(2). A (32)P-postlabeling technique was used to quantify adducts in normal tissue [white blood cells (WBC) and buccal cells] and tumor. RESULTS: Normal tissue samples for adduct determination were obtained from 63 patients and tumor biopsies from 23 of these patients. Linear relationships and high correlations were observed between the levels of two guanosine- and adenosine-guanosine-adducts in normal and tumor tissue. Adduct levels in tumors were two to five times higher than those in WBC (P<0.001). No significant correlations were found between adduct levels in normal tissues and primary tumor biopsies, nor between WBC and buccal cells. CONCLUSIONS: In concurrent chemoradiotherapy schedules, cisplatin adduct levels in tumors were significantly higher than in normal tissues (WBC). No evidence of a correlation was found between adduct levels in normal tissues and primary tumor biopsies. This lack of correlation may, to some extent, explain the inconsistencies in the literature regarding whether or not cisplatin-DNA adducts can be used as a predictive test in anticancer platinum therapy

    A phase I, open-label, randomized crossover study to assess the effect of dosing of the MEK 1/2 inhibitor Selumetinib (AZD6244; ARRY-142866) in the presence and absence of food in patients with advanced solid tumors

    Get PDF
    &lt;p&gt;&lt;b&gt;Purpose:&lt;/b&gt; This Phase I study assessed whether food influences the rate and extent of selumetinib absorption in patients with advanced solid malignancies and determined the safety, tolerability, and pharmacokinetic (PK) profile of selumetinib and its active metabolite N-desmethyl-selumetinib in fed and fasted states.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; A single dose of 75 mg selumetinib was to be taken with food on Day 1 followed by a single dose of 75 mg after fasting for at least 10 h on Day 8, or vice versa, followed by twice daily dosing of 75 mg selumetinib from Day 10. Plasma concentrations and PK parameters were determined on Days 1 and 8. Patients could continue to receive selumetinib for as long as they benefitted from treatment.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; In total, 31 patients were randomized to receive selumetinib; 15 to fed/fasted sequence and 16 to fasted/fed sequence. Comprehensive PK sampling was performed on 11 and 10 patients, respectively. The geometric least-squares means of C&lt;sub&gt;max&lt;/sub&gt; and AUC for selumetinib were reduced by 62% (ratio 0.38 90% CI 0.29, 0.50) and 19% (ratio 0.81 90% CI 0.74, 0.88), respectively, under fed compared with fasting conditions. The rate of absorption (t&lt;sub&gt;max&lt;/sub&gt;) of selumetinib (fed) was delayed by approximately 2.5 h (median). The food effect was also observed for the active metabolite N-desmethyl-selumetinib. Selumetinib was well tolerated.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; The presence of food decreased the extent of absorption of selumetinib. It is recommended that for further clinical studies, selumetinib be taken on an empty stomach. Selumetinib demonstrated an acceptable safety profile in the advanced cancer population.&lt;/p&gt

    A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin

    Get PDF
    Polymeric drug conjugates are a new and experimental class of drug delivery systems with pharmacokinetic promises. The antineoplastic drug camptothecin was linked to a water-soluble polymeric backbone (MAG-CPT) and administrated as a 30 min infusion over 3 consecutive days every 4 weeks to patients with malignant solid tumours. The objectives of our study were to determine the maximal tolerated dose, the dose-limiting toxicities, and the plasma and urine pharmacokinetics of MAG-CPT, and to document anti-tumour activity. The starting dose was 17 mg m−2 day−1. Sixteen patients received 39 courses at seven dose levels. Maximal tolerated dose was at 68 mg m−2 day−1 and dose-limiting toxicities consisted of cumulative bladder toxicity. MAG-CPT and free camptothecin were accumulated during days 1–3 and considerable amounts of MAG-CPT could still be retrieved in plasma and urine after 4–5 weeks. The half-lives of bound and free camptothecin were equal indicating that the kinetics of free camptothecin were release rate dependent. In summary, the pharmacokinetics of camptothecin were dramatically changed, showing controlled prolonged exposure of camptothecin. Haematological toxicity was relatively mild, but serious bladder toxicity was encountered which is typical for camptothecin and was found dose limiting

    Abundance of Early Functional HIV-Specific CD8+ T Cells Does Not Predict AIDS-Free Survival Time

    Get PDF
    Background T-cell immunity is thought to play an important role in controlling HIV infection, and is a main target for HIV vaccine development. HIV-specific central memory CD8+ and CD4+ T cells producing IFNγ and IL-2 have been associated with control of viremia and are therefore hypothesized to be truly protective and determine subsequent clinical outcome. However, the cause-effect relationship between HIV-specific cellular immunity and disease progression is unknown. We investigated in a large prospective cohort study involving 96 individuals of the Amsterdam Cohort Studies with a known date of seroconversion whether the presence of cytokine-producing HIV-specific CD8+ T cells early in infection was associated with AIDS-free survival time. Methods and Findings The number and percentage of IFNγ and IL-2 producing CD8+ T cells was measured after in vitro stimulation with an overlapping Gag-peptide pool in T cells sampled approximately one year after seroconversion. Kaplan-Meier survival analysis and Cox proportional hazard models showed that frequencies of cytokine-producing Gag-specific CD8+ T cells (IFNγ, IL-2 or both) shortly after seroconversion were neither associated with time to AIDS nor with the rate of CD4+ T-cell decline. Conclusions These data show that high numbers of functional HIV-specific CD8+ T cells can be found early in HIV infection, irrespective of subsequent clinical outcome. The fact that both progressors and long-term non-progressors have abundant T cell immunity of the specificity associated with low viral load shortly after seroconversion suggests that the more rapid loss of T cell immunity observed in progressors may be a consequence rather than a cause of disease progression
    corecore