18 research outputs found

    Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial

    Get PDF
    Background: The treatment results of external beam radiotherapy for intermediate and high risk prostate cancer patients are insufficient with five-year biochemical relapse rates of approximately 35%. Several randomized trials have shown that dose escalation to the entire prostate improves biochemical disease free survival. However, further dose escalation to the whole gland is limited due to an unacceptable high risk of acute and late toxicity. Moreover, local recurrences often originate at the location of the macroscopic tumor, so boosting the radiation dose at the macroscopic tumor within the prostate might increase local control. A reduction of distant metastases and improved survival can be expected by reducing local failure. The aim of this study is to investigate the benefit of an ablative microboost to the macroscopic tumor within the prostate in patients treated with external beam radiotherapy for prostate cancer.Methods/Design: The FLAME-trial (Focal Lesion Ablative Microboost in prostatE cancer) is a single blind randomized controlled phase III trial. We aim to include 566 patients (283 per treatment arm) with intermediate or high risk adenocarcinoma of the prostate who are scheduled for external beam radiotherapy using fiducial markers for position verification. With this number of patients, the expected increase in five-year freedom from biochemical failure rate of 10% can be detected with a power of 80%. Patients allocated to the standard arm receive a dose of 77 Gy in 35 fractions to the entire prostate and patients in the experimental arm receive 77 Gy to the entire prostate and an additional integrated microboost to the macroscopic tumor of 95 Gy in 35 fractions. The secondary outcome measures include treatment-related toxicity, quality of life and disease-specific survival. Furthermore, by localizing the recurrent tumors within the prostate during follow-up and correlating this with the delivered dose, we can obtain accurate dose-effect information for both the macroscopic tumor and subclinical disease in prostate cancer. The rationale, study design and the first 50 patients included are described.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Yeasts influence host selection and larval fitness in two frugivorous carpophilus beetle species

    No full text
    We explored how gut-associated yeasts influence olfactory behaviour and resource use in two pest species of Carpophilus beetle that co-exist in Australian stone fruits. Molecular analysis of yeasts isolated from the gut of C. davidsoni (prefers ripe fruits) and C. hemipterus (prefers overripe and rotting fruits) revealed that the predominant species were Pichia kluyveri and Hanseniaspora guilliermondii. In olfactory attraction and oviposition trials, adult beetles preferred H. guilliermondii over P. kluyveri, and follow up GC-MS analysis revealed unambiguous differences between the odour profiles of these yeasts. In contrast to behavioural trials, larval feeding assays showed that fruit substrates inoculated with P. kluyveri yielded significantly faster development times, higher pupal mass, and a greater number of adult beetles, compared to H. guilliermondii — in other words, the lesser preferred yeast (by foraging adults) was more suitable for larval survival. Moreover, whilst larvae of both species survived to adulthood when fed solely on P. kluyveri (i.e. without a fruit substrate), only larvae of C. davidsoni could develop on H. guilliermondii; and only C. davidsoni reached adulthood feeding on a yeast-free fruit substrate. We discuss how these findings may relate to adaptations towards early colonising of fruits by C. davidsoni, enabling differences in resource use and potentially resource partitioning in the two beetles. More broadly, consideration of microbial interactions might help develop host selection theory. Our results could pave the way to more powerful attractants to mass-trap and monitor Carpophilus pests in fruit orchards.</p
    corecore