24 research outputs found

    Immune profiling of pediatric solid tumors

    Full text link
    Pediatric cancers, particularly high-risk solid tumors, urgently need effective and specific therapies. Their outlook has not appreciably improved in decades. Immunotherapies such as immune checkpoint inhibitors offer much promise, but most are only approved for use in adults. Though several hundred clinical trials have tested immune-based approaches in childhood cancers, few have been guided by biomarkers or clinical-grade assays developed to predict patient response and, ultimately, to help select those most likely to benefit. There is extensive evidence in adults to show that immune profiling has substantial predictive value, but few studies focus on childhood tumors, because of the relatively small disease population and restricted use of immune-based therapies. For instance, only one published study has retrospectively examined the immune profiles of pediatric brain tumors after immunotherapy. Furthermore, application and integration of advanced multiplex techniques has been extremely limited. Here, we review the current status of immune profiling of pediatric solid tumors, with emphasis on tumor types that represent enormous unmet clinical need, primarily in the context of immune checkpoint inhibitor therapy. Translating optimized and informative immune profiling into standard practice and access to personalized combination therapy will be critical if childhood cancers are to be treated effectively and affordably

    Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma.

    Full text link
    Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range

    Therapeutic strategies to remodel immunologically cold tumors

    Get PDF
    Immune checkpoint inhibitors (ICIs) induce a durable response in a wide range of tumor types, but only a minority of patients outside these 'responsive' tumor types respond, with some totally resistant. The primary predictor of intrinsic immune resistance to ICIs is the complete or near-complete absence of lymphocytes from the tumor, so-called immunologically cold tumors. Here, we propose two broad approaches to convert 'cold' tumors into 'hot' tumors. The first is to induce immunogenic tumor cell death, through the use of oncolytic viruses or bacteria, conventional cancer therapies (e.g. chemotherapy or radiation therapy) or small molecule drugs. The second approach is to target the tumor microenvironment, and covers diverse options such as depleting immune suppressive cells; inhibiting transforming growth factor-beta; remodelling the tumor vasculature or hypoxic environment; strengthening the infiltration and activation of antigen-presenting cells and/or effector T cells in the tumor microenvironment with immune modulators; and enhancing immunogenicity through personalised cancer vaccines. Strategies that successfully modify cold tumors to overcome their resistance to ICIs represent mechanistically driven approaches that will ultimately result in rational combination therapies to extend the clinical benefits of immunotherapy to a broader cancer cohort

    CAR-T Cells Inflict Sequential Killing of Multiple Tumor Target Cells

    No full text
    Adoptive therapy with chimeric antigen receptor (CAR) T cells shows great promise clinically. However, there are important aspects of CAR-T-cell biology that have not been explored, particularly with respect to the kinetics of activation, immune synapse formation, and tumor cell killing. Moreover, the effects of signaling via the endogenous T-cell receptor (TCR) or CAR on killing kinetics are unclear. To address these issues, we developed a novel transgenic mouse (designated CAR.OT-I), in which CD8(+) T cells coexpressed the clonogenic OT-I TCR, recognizing the H-2K(b)-presented ovalbumin peptide SIINFEKL, and an scFv specific for human HER2. Primed CAR.OT-I T cells were mixed with SIINFEKL-pulsed or HER2-expressing tumor cells and visualized in real-time using time-lapse microscopy. We found that engagement via CAR or TCR did not affect cell death kinetics, except that the time from degranulation to CAR-T-cell detachment was faster when CAR was engaged. We showed, for the first time, that individual CAR.OT-I cells can kill multiple tumor cells ("serial killing"), irrespective of the mode of recognition. At low effector:target ratios, the tumor cell killing rate was similar via TCR or CAR ligation over the first 20 hours of coincubation. However, from 20 to 50 hours, tumor cell death mediated through CAR became attenuated due to CAR downregulation throughout the time course. Our study provides important insights into CAR-T-tumor cell interactions, with implications for single- or dual receptor-focused T-cell therapy
    corecore