30 research outputs found
Measuring enteric methane emissions from individual ruminant animals in their natural environment
Ruminant livestock are an important source of meat, milk, fiber, and labor for humans. The process by which ruminants digest plant material through rumen fermentation into useful product results in the loss of energy in the form of methane gas from consumed organic matter. The animal removes the methane building up in its rumen by repeated eructations of gas through its mouth and nostrils. Ruminant livestock are a notable source of atmospheric methane, with an estimated 17% of global enteric methane emissions from livestock. Historically, enteric methane was seen as an inefficiency in production and wasted dietary energy. This is still the case, but now methane is seen more as a pollutant and potent greenhouse gas. The gold standard method for measuring methane production from individual animals is a respiration chamber, which is used for metabolic studies. This approach to quantifying individual animal emissions has been used in research for over 100 years; however, it is not suitable for monitoring large numbers of animals in their natural environment on commercial farms. In recent years, several more mobile monitoring systems discussed here have been developed for direct measurement of enteric methane emissions from individual animals. Several factors (diet composition, rumen microbial community, and their relationship with morphology and physiology of the host animal) drive enteric methane production in ruminant populations. A reliable method for monitoring individual animal emissions in large populations would allow (1) genetic selection for low emitters, (2) benchmarking of farms, and (3) more accurate national inventory accounting
Methane production in ruminant animals
Agriculture is a significant source of GHGs globally and ruminant livestock animals are one of the largest contributors to these emissions, responsible for an estimated 14% of GHGs (CH4 and N2O combined) worldwide. A large portion of GHG fluxes from agricultural activities is related to CH4 emissions from ruminants. Both direct and indirect methods are available. Direct methods include enclosure techniques, artificial (e.g. SF6) or natural (e.g. CO2) tracer techniques, and micrometeorological methods using open-path lasers. Under the indirect methods, emission mechanisms are understood, where the CH4 emission potential is estimated based on the substrate characteristics and the digestibility (i.e. from volatile fatty acids). These approximate methods are useful if no direct measurement is possible. The different systems used to quantify these emission potentials are presented in this chapter. Also, CH4 from animal waste (slurry, urine, dung) is an important source: methods pertaining to measuring GHG potential from these sources are included
An alternative approach for sustainable sheep meat production: implications for food security
Background: A pelleted diet containing camelina hay (CAMH) or camelina meal (CAMM) as a supplement along with a control pellet (CONT) diet formulated with commonly available feeds during summer was used to investigate an alternative pathway for sustainable meat production. Sustainable meat production was based on a simple estimation of income from meat produced versus feed costs if animals were fed for an extended period over summer compared to early slaughter at the beginning of summer. Eighty maternal composite wether lambs (Composite) based on Coopworth genetics and 80 pure Merino wether yearlings were divided into 10 groups within breed (n = 8) using stratified randomisation based on liveweights. Following 1 week of adaptation to experimental diets, animals were fed experimental diets for up to10 weeks. Results: Animals were slaughtered after either 8, 9 or 10 weeks of full feeding when the average liveweight of diet/genetic combination reached a weight appropriate for either 'heavy lamb' or 'heavy hogget' production, which occurred between 8 and 10 weeks of full feeding. There was no diet × breed interactions except for dressing percentage (DP), where Composite lambs fed the CAMH diet had the greatest DP (48.1 ± 0.35) and the Merino yearlings fed the CAMM diet the lowest DP (45.8 ± 0.33). Composite lambs gained 17.6-20.3 kg and Merino yearlings gained 10.7-12.9 kg liveweight. Based on their DP, this resulted in the production of approximately 8.3-9.5 kg additional carcass weight in Composites and 4.9-5.7 kg in Merinos, which in turn produced greater profit per Composite lamb and a small profit per Merino yearling. Conclusions: Composite lambs fed CAMM and CAMH had 5% greater carcass weights at slaughter compared to the CONT group, but dietary treatments did not change carcass weight of Merino yearlings at slaughter. The extended feeding approach offered the producer an estimated economic gain of AUD 25.00 when yearly average prices were used (Method 1) and AUD 47.70 when pre- and post-summer average prices were used (Method 2) per Composite lambs, but extra carcass gain did not result in the same profit per Merino yearling. Among the Composites, the profit for animals fed the CAMH and CAMM were AUD 4.50 greater than CONT group when full year average prices were applied while AUD 5.50 greater than CONT group when pre- and post-summer average prices were applied. However, we acknowledge a combination approach of extended feeding for a portion of animals already on ground and selling the remaining animals pre-summer with joining of additional ewes is the most likely strategy. Considering the scenario of extended feeding for 3 weeks, based on the growth rates observed for Composite lambs, if an additional 2 kg carcass weight per animal can be gained for 50% of the 22 million lambs slaughtered in Australia (= 11 million animals), it would potentially supply an additional 22 million kg of lamb carcasses produced per annum. This is equivalent to producing an extra 1 million lamb carcasses per annum weighing 22 kg each. Feeding Composite lambs for an extended period and selling Merino yearlings pre-summer may be a good option due to faster growth rate of Composites that may help quick turn-over to market
Volatile Fatty Acids in Ruminal Fluid Can Be Used to Predict Methane Yield of Dairy Cows.
The dry matter intake (DMI) of forage-fed cattle can be used to predict their methane emissions. However, many cattle are fed concentrate-rich diets that decrease their methane yield. A range of equations predicting methane yield exist, but most use information that is generally unavailable when animals are fed in groups or grazing. The aim of this research was to develop equations based on proportions of ruminal volatile-fatty-acids to predict methane yield of dairy cows fed forage-dominant as well as concentrate-rich diets. Data were collated from seven experiments with a total of 24 treatments, from 215 cows. Forage in the diets ranged from 440 to 1000 g/kg. Methane was measured either by open-circuit respiration chambers or a sulfur hexafluoride (SF6) technique. In all experiments, ruminal fluid was collected via the mouth approximately four hours after the start of feeding. Seven prediction equations were tested. Methane yield (MY) was equally best predicted by the following equations: MY = 4.08 × (acetate/propionate) + 7.05; MY = 3.28 × (acetate + butyrate)/propionate + 7.6; MY = 316/propionate + 4.4. These equations were validated against independent published data from both dairy and beef cattle consuming a wide range of diets. A concordance of 0.62 suggests these equations may be applicable for predicting methane yield from all cattle and not just dairy cows, with root mean-square error of prediction of 3.0 g CH4/kg dry matter intake
A meta-analysis of effects of dietary seaweed on beef and dairy cattle performance and methane yield
There has been considerable interest in the use of red seaweed, and in particular Asparagopsis taxiformis, to increase production of cattle and to reduce greenhouse gas emissions. We hypothesized that feeding seaweed or seaweed derived products would increase beef or dairy cattle performance as indicated by average daily gain (ADG), feed efficiency measures, milk production, and milk constituents, and reduce methane emissions. We used meta-analytical methods to evaluate these hypotheses. A comprehensive search of Google Scholar, Pubmed and ISI Web of Science produced 14 experiments from which 23 comparisons of treatment effects could be evaluated. Red seaweed (Asparagopsis taxiformis) and brown seaweed (Ascophyllum nodosum) were the dominant seaweeds used. There were no effects of treatment on ADG or dry matter intake (DMI). While there was an increase in efficiency for feed to gain by 0.38 kg per kg [standardized mean difference (SMD) = 0.56; P = 0.001] on DerSimonian and Laird (D&L) evaluation, neither outcome was significant using the more rigorous robust regression analysis (P >0.06). The type of seaweed used was not a significant covariable for ADG and DMI, but A. nodosum fed cattle had lesser feed to gains efficiency compared to those fed A. taxiformis. Milk production was increased with treatment on weighted mean difference (WMD; 1.35 ± 0.44 kg/d; P 80%). In one comparison, methane yield was reduced by 97%. We conclude that while there was evidence of potential for benefit from seaweed use to improve production and reduce methane yield more in vivo experiments are required to strengthen the evidence of effect and identify sources of heterogeneity in methane response, while practical applications and potential risks are evaluated for seaweed use